

User Guide Unidrive Sp Free Standing

Model sizes 6 to 9

Universal Variable Speed AC Drive for induction and servo motors

Part Number: 0471-0122-01 Issue: 1

www.controltechniques.com

General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the variable speed drive with the motor.

The contents of this guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

Drive software version

This product is supplied with the latest software version. If this drive is to be connected to an existing system or machine, all drive software versions should be verified to confirm the same functionality as drives of the same model already present. This may also apply to drives returned from a Control Techniques Service Centre or Repair Centre. If there is any doubt please contact the supplier of the product.

The software version of the drive can be checked by looking at Pr **11.29** and Pr **11.34**. This takes the form of xx.yy.zz where Pr **11.29** displays xx.yy and Pr **11.34** displays zz. (e.g. for software version 01.01.00, Pr **11.29** = 1.01 and Pr **11.34** displays 0).

Environmental statement

Control Techniques is committed to minimising the environmental impacts of its manufacturing operations and of its products throughout their life cycle. To this end, we operate an Environmental Management System (EMS) which is certified to the International Standard ISO 14001. Further information on the EMS, our Environmental Policy and other relevant information is available on request, or can be found at www.greendrives.com.

The electronic variable-speed drives manufactured by Control Techniques have the potential to save energy and (through increased machine/process efficiency) reduce raw material consumption and scrap throughout their long working lifetime. In typical applications, these positive environmental effects far outweigh the negative impacts of product manufacture and end-of-life disposal.

Nevertheless, when the products eventually reach the end of their useful life, they must not be discarded but should instead be recycled by a specialist recycler of electronic equipment. Recyclers will find the products easy to dismantle into their major component parts for efficient recycling. Many parts snap together and can be separated without the use of tools, whilst other parts are secured with conventional fasteners. Virtually all parts of the product are suitable for recycling.

Product packaging is of good quality and can be re-used. Large products are packed in wooden crates, while smaller products come in strong cardboard cartons which themselves have a high recycled fibre content. If not re-used, these containers can be recycled. Polythene, used on the protective film and bags for wrapping product, can be recycled in the same way. Control Techniques' packaging strategy prefers easily-recyclable materials of low environmental impact, and regular reviews identify opportunities for improvement.

When preparing to recycle or dispose of any product or packaging, please observe local legislation and best practice.

REACH legislation

EC Regulation 1907/2006 on the Registration, Evaluation, Authorisation and restriction of Chemicals (REACH) requires the supplier of an article to inform the recipient if it contains more than a specified proportion of any substance which is considered by the European Chemicals Agency (ECHA) to be a Substance of Very High Concern (SVHC) and is therefore listed by them as a candidate for compulsory authorisation.

For current information on how this requirement applies in relation to specific Control Techniques products, please approach your usual contact in the first instance. Control Techniques position statement can be viewed at: http://www.controltechniques.com/REACH

Copyright© June 2009 Control Techniques Ltd.Issue Number:1Software:01.18.00 onwards

How to use this guide

This user guide provides complete information for installing and operating the drive from start to finish.

The information is in logical order, taking the reader from receiving the drive through to fine tuning the performance.

NOTE

There are specific safety warnings throughout this guide, located in the relevant sections. In addition, Chapter 1 *Safety Information* contains general safety information. It is essential that the warnings are observed and the information considered when working with or designing a system using the drive.

This map of the user guide helps to find the right sections for the task you wish to complete, but for specific information, refer to *Contents* on page 4:

	Start / Familiarisation	System design	Programming and commissioning	Troubleshooting
1 Safety information	• •	•	•	
2 Product information	•	•		
3 Mechanical installation		•		
4 Electrical installation				
5 Getting started	•	•		
6 Basic parameters	•	•		
7 Running the motor	• •	•	•	
8 Optimization		•	•	
9 SMARTCARD operation		•		
10 Onboard PLC		•		
11 Advanced parameters				
12 Technical data	•			
13 Diagnostics				
14 UL listing information				

Contents

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7	Safety Information7Warnings, Cautions and Notes7Electrical safety - general warning7System design and safety of personnel7Environmental limits7Compliance with regulations7Motor7Adjusting parameters7
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	Product information8Model number8Ratings9Operating modes12Compatible encoders12Drive features13Nameplate description15Options15Items supplied with the drive18
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	Mechanical Installation19Safety information19Planning the installation20Terminal cover removal20Installing fuses in a Free Standing drive24Baying Free Standing drives24Free standing drive dimensions32External EMC filter36Electrical terminals39Solutions Module installation / removal42Routine maintenance43
4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	Electrical Installation.44Power connections.45AC supply requirements.50Auxiliary power supply.51Control 24Vdc supply.53Ratings.53Output circuit and motor protection.56Braking.58Ground leakage.59EMC (Electromagnetic compatibility).59Serial communications connections.63Control connections.63Encoder connections.67SAFE TORQUE OFF (SECURE DISABLE).69

5	Getting Started	
5.1	Understanding the display	
5.2	Keypad operation	
5.3	Menu structure	
5.4	Menu 0	
5.5	Advanced menus	
5.6	Changing the operating mode	
5.7	Saving parameters	
5.8	Restoring parameter defaults	
5.9	Parameter access level and security	77
5.10	Displaying parameters with non-default values only	78
5.11	Displaying destination parameters only	
5.12	Serial communications	
6	Basic parameters	80
6.1	Single line descriptions	
6.2	Full descriptions	
7	Running the motor	94
7.1	Quick start Connections	
7.2	Changing the operating mode	
7.3	Quick Start commissioning/start-up	
7.4	Quick start commissioning/start-up (CTSoft) .	
7.5	Setting up a feedback device	
8	Optimization	. 106
8.1	Motor map parameters	106
8.2	Maximum motor rated current	116
8.3	Current limits	116
8.4	Motor thermal protection	
8.5	Switching frequency	
8.6	High speed operation	117
9	SMARTCARD operation	. 119
9.1	Introduction	119
9.2	Transferring data	
9.3	Data block header information	
9.4	SMARTCARD parameters	122
9.5	SMARTCARD trips	123
10	Onboard PLC	
10.1	Onboard PLC and SYPTLite	
10.2	Benefits	
10.3	Limitations	
10.4	Getting started	
10.5	Onboard PLC parameters	
10.6	Onboard PLC trips	
10.7	Onboard PLC and the SMARTCARD	127

11	Advanced parameters	128
11.1	Menu 1: Frequency / speed reference	136
11.2	Menu 2: Ramps	140
11.3	Menu 3: Frequency slaving, speed	
	feedback and speed control	143
11.4	Menu 4: Torque and current control	148
11.5	Menu 5: Motor control	
11.6	Menu 6: Sequencer and clock	157
11.7	Menu 7: Analog I/O	
11.8	Menu 8: Digital I/O	162
11.9	Menu 9: Programmable logic, motorized pot,	
	binary sum and timers	
	Menu 10: Status and trips	
11.11	Menu 11: General drive set-up	169
11.12	Menu 12: Threshold detectors, variable	
	selectors and brake control function	170
11.13	Menu 13: Position control	176
11.14	Menu 14: User PID controller	182
11.15	Menus 15, 16 and 17: Solutions Module	
	set-up	
	Menu 18: Application menu 1	
	Menu 19: Application menu 2	
11.18	Menu 20: Application menu 3	221
	Menu 21: Second motor parameters	
11.20	Menu 22: Additional Menu 0 set-up	223
11.21	Advanced features	224
12	Technical Data	
12.1	Drive technical data	233
12.2	Optional external EMC filters	241
13	Diagnostics	242
13.1	Trip indications	242
13.2	Alarm indications	
13.3	Status indications	
13.4	Displaying the trip history	259
13.5	Behaviour of the drive when tripped	
14	UL Listing Information	260
14.1	Common UL information	260
14.2	Power dependant UL information	260
14.3	AC supply specification	
14.4	Maximum continuous output current	
14.5	Safety label	
14.6	UL listed accessories	
	List of figures	261
	List of tables	263
	Index	265

Control Techniques Ltd The Gro Newtown Powys UK SY16 3BE

SP6411	SP6412			
SP6431	SP6432			
SP6611	SP6612			
SP6631	SP6632			
SP7411	SP7412			
SP7431	SP7432			
SP7611	SP7612			
SP7631	SP7632			
SP8411	SP8412	SP8413	SP8414	
SP8431	SP8432	SP8433	SP8434	
SP8611	SP8612	SP8613	SP8614	
SP8631	SP8632	SP8633	SP8634	
SP9411	SP9413	SP9414	SP9415	

SP9411	SP9413	SP9414	SP9415	
SP9431	SP9433	SP9434	SP9435	
SP9611	SP9613	SP9614	SP9615	
SP9631	SP9633	SP9634	SP9635	

The AC variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonized standards:

EN 61800-5-1*	Adjustable speed electrical power drive systems - safety requirements - electrical, thermal and energy
EN 61800-3	Adjustable speed electrical power drive systems. EMC product standard including specific test methods
EN 61000-6-2	Electromagnetic compatibility (EMC). Generic standards. Immunity standard for industrial environments

*Clause 5.2.3.8 of EN 61800-5-1:2003 (breakdown of components test) has been amended to eliminate the 30A ground (earth) fuse, in accordance with the draft edition 2 of IEC 61800-5-1

These products comply with the Low Voltage Directive 2006/95/EC, the Electromagnetic Compatibility (EMC) Directive 2004/108/EC and the CE Marking Directive 93/68/EEC.

20-

Executive Vice President, Technology Newtown

Date: 8th August 2007

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters. The drives must be installed only by professional assemblers who are familiar with requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used. Refer to the User Guide. An EMC Data Sheet is also available giving detailed EMC information.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

1 Safety Information

1.1 Warnings, Cautions and Notes

A Warning contains information which is essential for avoiding a safety hazard.

A Caution contains information which is necessary for avoiding a risk of damage to the product or other equipment.

NOTE

A Note contains information which helps to ensure correct operation of the product.

1.2 Electrical safety - general warning

The voltages used in the drive can cause severe electrical shock and/or burns, and could be lethal. Extreme care is necessary at all times when working with or adjacent to the drive.

Specific warnings are given at the relevant places in this User Guide.

1.3 System design and safety of personnel

The drive is intended as a component for professional incorporation into complete equipment or a system. If installed incorrectly, the drive may present a safety hazard.

The drive uses high voltages and currents, carries a high level of stored electrical energy, and is used to control equipment which can cause injury.

Close attention is required to the electrical installation and the system design to avoid hazards either in normal operation or in the event of equipment malfunction. System design, installation, commissioning/ start-up and maintenance must be carried out by personnel who have the necessary training and experience. They must read this safety information and this User Guide carefully.

The STOP and SAFE TORQUE OFF (SECURE DISABLE) function functions of the drive do not isolate dangerous voltages from the output of the drive or from any external option unit. The supply must be disconnected by an approved electrical isolation device before gaining access to the electrical connections.

With the sole exception of the SAFE TORQUE OFF (SECURE DISABLE) function, none of the drive functions must be used to ensure safety of personnel, i.e. they must not be used for safety-related functions.

Careful consideration must be given to the functions of the drive which might result in a hazard, either through their intended behaviour or through incorrect operation due to a fault. In any application where a malfunction of the drive or its control system could lead to or allow damage, loss or injury, a risk analysis must be carried out, and where necessary, further measures taken to reduce the risk - for example, an over-speed protection device in case of failure of the speed control, or a fail-safe mechanical brake in case of loss of motor braking.

The SAFE TORQUE OFF (SECURE DISABLE) function has been approved¹ as meeting the requirements of EN954-1 category 3 for the prevention of unexpected starting of the drive. It may be used in a safety-related application. The system designer is responsible for ensuring that the complete system is safe and designed correctly according to the relevant safety standards.

1.4 Environmental limits

Instructions in this User Guide regarding transport, storage, installation and use of the drive must be complied with, including the specified environmental limits. Drives must not be subjected to excessive physical force.

1.5 Compliance with regulations

The installer is responsible for complying with all relevant regulations, such as national wiring regulations, accident prevention regulations and electromagnetic compatibility (EMC) regulations. Particular attention must be given to the cross-sectional areas of conductors, the selection of fuses or other protection, and protective earth (ground) connections.

This User Guide contains instruction for achieving compliance with specific EMC standards.

Within the European Union, all machinery in which this product is used must comply with the following directives:

98/37/EC: Safety of machinery.

89/336/EEC: Electromagnetic Compatibility.

1.6 Motor

Ensure the motor is installed in accordance with the manufacturer's recommendations. Ensure the motor shaft is not exposed.

Standard squirrel cage induction motors are designed for single speed operation. If it is intended to use the capability of the drive to run a motor at speeds above its designed maximum, it is strongly recommended that the manufacturer is consulted first.

Low speeds may cause the motor to overheat because the cooling fan becomes less effective. The motor should be installed with a protection thermistor. If necessary, an electric forced vent fan should be used.

The values of the motor parameters set in the drive affect the protection of the motor. The default values in the drive should not be relied upon.

It is essential that the correct value is entered in parameter **0.46** motor rated current. This affects the thermal protection of the motor.

1.7 Adjusting parameters

Some parameters have a profound effect on the operation of the drive. They must not be altered without careful consideration of the impact on the controlled system. Measures must be taken to prevent unwanted changes due to error or tampering.

¹Independent approval by BGIA has been given.

Safety Pro ormation infor	ProductMechanicalformationInstallation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
------------------------------	--	----------------------------	--------------------	------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

2 Product information

Unidrive SP Free Standing cubicles are made up to one or more SPM modules (SPMA / SPM), depending on size and current ratings.

2.1 Model number

The way in which the model numbers for the Unidrive SP range are formed is illustrated below.

Figure 2-1 Unidrive SP Free Standing size 6 and 7 order codes

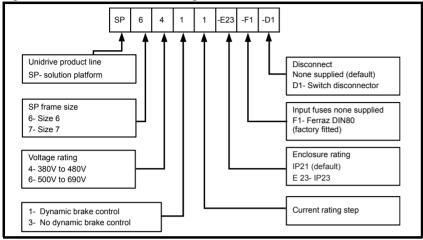
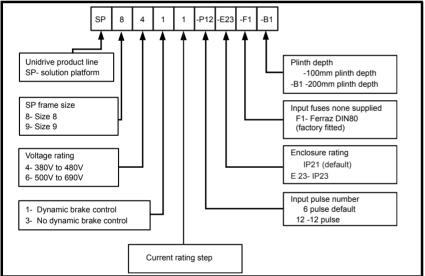
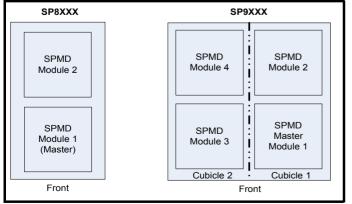




Figure 2-2 Unidrive SP Free Standing size 8 and 9 order codes

Figure 2-3 Drive configuration

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g	Information

2.2 Ratings

The Unidrive SP is dual rated. The setting of the motor rated current determines which rating applies - Heavy Duty or Normal Duty. The two ratings are compatible with motors designed to IEC60034. The graph aside illustrates the difference between Normal Duty and Heavy Duty with respect to continuous current rating and short term overload limits.	Available output current Overload limit - Heavy Duty Maximum continuous current (above 50% base speed) - Normal Duty Maximum continuous current - Heavy Duty
	Heavy Duty - with high overload capability
Normal Duty For applications which use Self ventilated (TENV/TEFC) induction motors and require a low overload capability, and full torque at low speeds is not required (e.g. fans, pumps). Self ventilated (TENV/TEFC) induction motors require increased protection against overload due to the reduced cooling effect of the fan at low speed. To provide the correct level of protection the I ² t software operates at a level which is speed dependent. This is illustrated in the graph below. NOTE The speed at which the low speed protection takes effect can be changed by the setting of Pr 4.25. The protection starts when the motor speed is below 15% of base speed when Pr 4.25 = 0 (default) and below 50% when Pr 4.25 = 1.	Heavy Duty (default) For constant torque applications or applications which require a high overload capability, or full torque is required at low speeds (e.g. winders hoists). The thermal protection is set to protect force ventilated induction motors and permanent magnet servo motors by default. NOTE If the application uses a self ventilated (TENV/TEFC) induction motor and increased thermal protection is required for speeds below 50% base speed, then this can be enabled by setting Pr 4.25 = 1.
Operation of motor <i>I</i> ² t protection (It.AC trip)	
 Motor I²t protection is fixed as shown below and is compatible with: Self ventilated (TENV/TEFC) induction motors 	 Motor I²t protection defaults to be compatible with: Forced ventilation induction motors Permanent magnet servo motors
Motor total current (Pr 4.01) as a percentage of motor rated current 100% 70% 70% 70% 70% 70% 70% 70% 70% 70%	Motor total current (Pr 4.01) as a percentage of motor rated current 100% 70% 70% 70% 70% 70% 70% 70% 70% 70%
percentage of base speed	percentage of base spee

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard		Technical	Diagnostics	UL Listing
	Information	information	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g	Information

The continuous current ratings given are for maximum 40°C (104°F) for the standard drive and 33°C (91°F) for the IP23 variant, 1000m altitude and 3.0 kHz switching. Derating is required for higher switching frequencies, higher ambient temperatures and high altitude. For further information, refer to section 12.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 229.

Table 2-1 400V standard (IP21) Free Standing drive ratings at 40°C (104°F) 6 pulse or 12 pulse (380V to 480V ±10%)

			Normal	Duty				Heavy Duty	1	
Mode	I	Maximum continuous output current	Peak current	Nominal power at 400V	Motor power at 460V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 400V	Motor power at 460V
		Α	Α	kW	hp	Α	Α	Α	kW	hp
	64X1	205	226	110	150	180	232	270	90	150
	64X2	236	260	132	200	210	271	315	110	150
A.	74X1	290	319	160	250	238	307	357	132	200
U	74X2	335	369	185	280	290	373	435	160	250
678	74X2*	350	385	200	300	290	374	435	160	250
	84X1	389	428	225	300	335	432	503	185	280
	84X2	450	495	250	400	389	502	584	225	300
	84X3	545	600	315	450	450	581	675	250	400
	84X4	620	682	355	500	545	703	818	315	450
	94X1	690	759	400	600	620	800	930	355	500
IJ	94X3	900	990	500	800	790	1019	1185	450	700
	94X4	1010	1111	560	900	900	1125	1305	500	800
	94X5	1164	1280	675	1000	1010	1303	1515	560	900

*When used in a maximum ambient temperature of 35°C, the Normal Duty output current rating of the SP74X2 is 350A allowing the drive to run 200kW motors.

Table 2-2 690V standard (IP21) Free Standing drive ratings at 40°C (104°F) 6 pulse or 12 pulse (500V to 690V ±10%)
--

			Norma	l duty				leavy duty		
Mod	el	Maximum continuous output current	Peak current	Nominal power at 690V	Motor power at 575V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 690V	Motor power at 575V
		Α	Α	kW	hp	Α	Α	Α	kW	hp
	66X1	125	138	110	125	100	129	150	90	110
	66X2	144	158	132	150	125	161	188	110	125
	76X1	168	185	160	150	144	186	216	132	150
678	76X2	192	211	185	200	168	217	252	160	150
	86X1	231	254	200	250	186	240	279	185	200
	86X2	266	293	225	300	231	298	347	200	250
	86X3	311	342	315	350	266	343	399	250	250
	86X4	355	391	355	400	311	401	467	315	350
	96X1	400	440	400	450	347	448	521	355	350
	96X3	533	586	500	600	466	601	699	450	500
	96X4	616	678	560	700	533	688	800	500	600
	96X5	711	782	630	800	622	802	933	560	700

Safety Product Me Information Ins	echanical Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--------------------------------------	--------------------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Table 2-3 400V IP23 Free Standing drive ratings at 33°C (91°F) 6 pulse or 12 pulse (380V to 480V ±10%)

			Normal	Duty				Heavy Duty		
Model	I	Maximum continuous output current	Peak current	Nominal power at 400V	Motor power at 460V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 400V	Motor power at 460V
		Α	Α	kW	hp	Α	Α	Α	kW	hp
	64X1-E23	205	226	110	150	180	232	270	90	150
	64X2-E23	236	260	132	200	210	271	315	110	150
	74X1-E23	290	319	160	250	238	307	357	132	200
	74X2-E23	335	369	185	280	290	374	435	160	250
C C	84X1-E23	389	428	225	300	335	432	503	185	280
	84X2-E23	450	495	250	400	389	502	584	225	300
	84X3-E23	545	600	315	450	450	581	675	250	400
	84X4-E23	620	682	355	500	545	703	818	315	450
	94X1-E23	690	759	400	600	620	800	930	355	500
ġ	94X3-E23	900	990	500	800	790	1019	1185	450	700
	94X4-E23*	1010	1111	560	900	900	1125	1305	500	800
	94X5-E23*	1164	1280	675	1000	1010	1303	1515	560	900

*Ratings for SP94X4 E23 and SP94X5 E23 are for an ambient temperature of 30°C

Table 2-4	690V IP23 Free Standin	g drive ratings at 33°C (104°F	F) 6 pulse or 12 pulse (575V to 690V ±10%)

			Norma	l duty				Heavy duty		
Mod	el	Maximum continuous output current	Peak current	Nominal power at 690V	Motor power at 575V	Maximum continuous output current	Open loop peak current	Closed loop peak current	Nominal power at 690V	Motor power at 575V
		Α	Α	kW	hp	Α	Α	Α	kW	hp
	66X1-E23	125	138	110	125	100	129	150	90	110
	66X2-E23	144	158	132	150	125	161	188	110	125
	76X1-E23	168	185	160	150	144	186	216	132	150
678	76X2-E23	192	211	185	200	168	217	252	160	150
	86X1-E23	231	254	200	250	186	240	279	185	200
	86X2-E23	266	293	225	300	231	298	347	200	250
	86X3-E23	311	342	315	350	266	343	399	250	250
	86X4-E23	355	391	355	400	311	401	467	315	350
	96X1-E23	400	440	400	450	347	448	521	355	350
Q	96X3-E23	533	586	500	600	466	601	699	450	500
9	96X4-E23*	616	678	560	700	533	688	800	500	600
	96X5-E23*	711	782	630	800	622	802	933	560	700

* Ratings for SP96X4 E23 and SP96X5 E23 are for an ambient temperature of 30°C

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					•			•		•			

2.2.1 Typical short term overload limits

The maximum percentage overload limit changes depending on the selected motor. Variations in motor rated current, motor power factor and motor leakage inductance all result in changes in the maximum possible overload. The exact value for a specific motor can be calculated using the equations detailed in Menu 4 in the Advanced User Guide.

Typical values are shown in the table below for closed loop vector (VT) and open loop (OL) modes:

Table 2-5 Typical overload limits for size 6 to 9

Operating mode	Closed loop from cold	Closed loop from 100%	Open loop from cold	Open loop from 100%
Normal Duty overload with motor rated current = drive rated current	110% for 165s	110% for 9s	110% for 165s	110% for 9s
Heavy Duty overload with motor rated current = drive rated current	150% for 60s	150% for 8s	129% for 97s	129% for 15s

Generally the drive rated current is higher than the matching motor rated current allowing a higher level of overload than the default setting.

The time allowed in the overload region is proportionally reduced at very low output frequency on some drive ratings.

NOTE

The maximum overload level which can be attained is independent of the speed.

2.3 Operating modes

The Unidrive SP is designed to operate in any of the following modes:

1. Open loop mode

Open loop vector mode Fixed V/F mode (V/Hz) Quadratic V/F mode (V/Hz)

2. RFC mode

3. Closed loop vector

Servo

4. Regen

2.3.1 Open loop mode

The drive applies power to the motor at frequencies varied by the user. The motor speed is a result of the output frequency of the drive and slip due to the mechanical load. The drive can improve the speed control of the motor by applying slip compensation. The performance at low speed depends on whether V/F mode or open loop vector mode is selected.

For further details refer to section 8.1.1 *Open loop motor control* on page 106.

Open loop vector mode

The voltage applied to the motor is directly proportional to the frequency except at low speed where the drive uses motor parameters to apply the correct voltage to keep the flux constant under varying load conditions.

Typically 100% torque is available down to 1Hz for a 50Hz motor.

Fixed V/F mode

The voltage applied to the motor is directly proportional to the frequency except at low speed where a voltage boost is provided which is set by the user. This mode can be used for multi-motor applications.

Typically 100% torque is available down to 4Hz for a 50Hz motor.

Quadratic V/F mode

The voltage applied to the motor is directly proportional to the square of the frequency except at low speed where a voltage boost is provided which is set by the user. This mode can be used for running fan or pump applications with quadratic load characteristics or for multi-motor applications. This mode is not suitable for applications requiring a high starting torque.

2.3.2 RFC mode

Rotor flux control provides closed loop control without the need for position feedback by using current, voltages and key motor parameters to estimate the motor speed. It can eliminate instability traditionally associated with open loop control such as operating large motors with light loads at low frequencies.

For further details, refer to section 8.1.2 RFC mode on page 108.

2.3.3 Closed loop vector mode

For use with induction motors with a feedback device installed.

The drive directly controls the speed of the motor using the feedback device to ensure the rotor speed is exactly as demanded. Motor flux is accurately controlled at all times to provide full torque all the way down to zero speed.

2.3.4 Servo

For use with permanent magnet brushless motors with a feedback device installed.

The drive directly controls the speed of the motor using the feedback device to ensure the rotor speed is exactly as demanded. Flux control is not required because the motor is self excited by the permanent magnets which form part of the rotor.

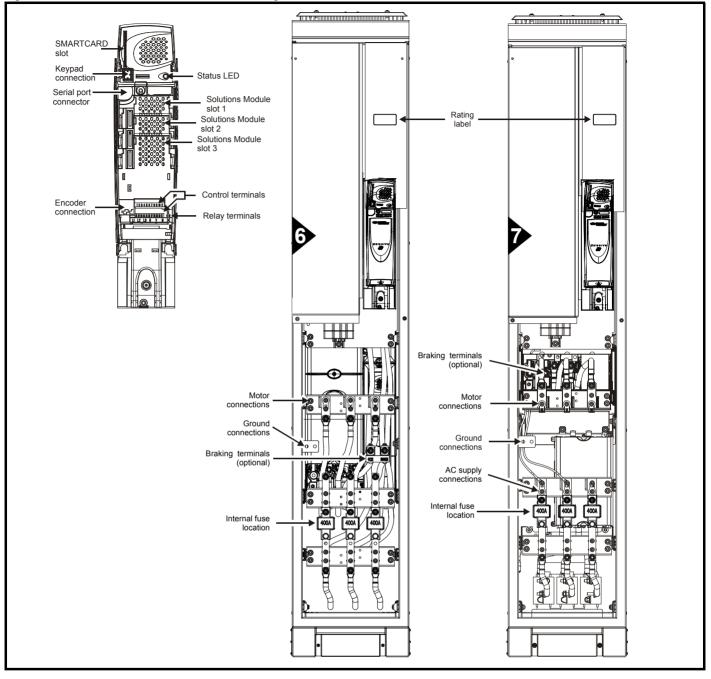
Absolute position information is required from the feedback device to ensure the output voltage is accurately matched to the back EMF of the motor. Full torque is available all the way down to zero speed.

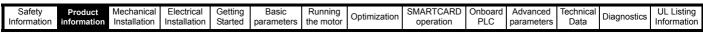
2.3.5 Regen

Free Standing drives are not intended to be used in regen mode.

2.4 Compatible encoders

Table 2-6 Encoders compatible with Unidrive SP


Encoder type	Pr 3.38 setting
Quadrature incremental encoders with or without marker pulse	Ab (0)
Quadrature incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Ab.SErvo (3)
Forward / reverse incremental encoders with or without marker pulse	Fr (2)
Forward / reverse incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Fr.SErvo (5)
Frequency and direction incremental encoders with or without marker pulse	Fd (1)
Frequency and direction incremental encoders with UVW commutation signals for absolute position for permanent magnet motors with or without marker pulse	Fd.SErvo (4)
Sincos incremental encoders	SC (6)
Heidenhain sincos encoders with Endat comms for absolute position	SC.EndAt (9)
Stegmann sincos encoders with Hiperface comms for absolute position	SC.HiPEr (7)
Sincos encoders with SSI comms for absolute position	SC.SSI (11)
SSI encoders (Gray code or binary)	SSI (10)
Endat comms only encoders	EndAt (8)
UVW commutation only encoders*	Ab.SErvo (3)


* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance

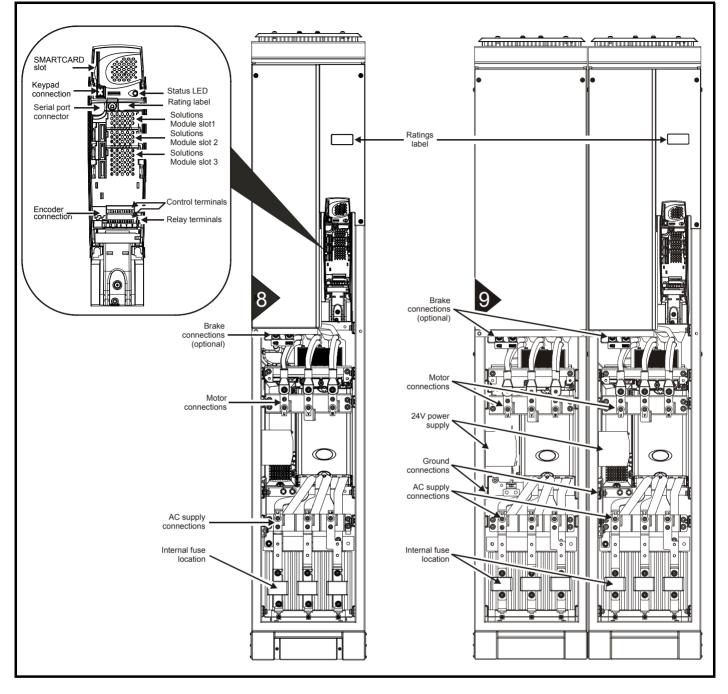

2.5 Drive features

Figure 2-4 Features of the size 6 and 7 Free Standing drive

Figure 2-5 Features of the size 8 and 9 Free Standing drive



Safety Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information information	n Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

2.6 Nameplate description

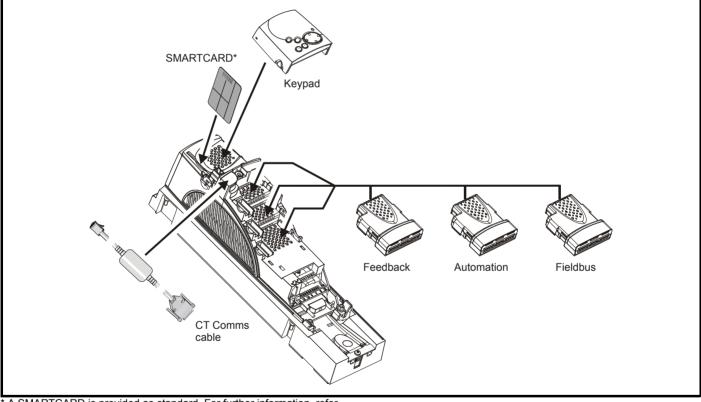

See Figure 2-1 and Figure 2-2 for location of the drive rating labels.

Figure 2-6 Typical drive rating label

2.7 Options

Figure 2-7 Options available with Unidrive SP

* A SMARTCARD is provided as standard. For further information, refer to Chapter 9 *SMARTCARD operation* on page 119.

	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	----------------------------	----------------------------	--------------------	------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

All Solutions Modules are color-coded in order to make identification easy. The following table shows the color-code key and gives further details on their function.

Table 2-7 Solutions Module identification

Туре	Solutions Module	Color	Name	Further Details
		Light Green	SM-Universal Encoder Plus	Universal Feedback interface Feedback interface for the following devices: Inputs Outputs • Incremental encoders • Quadrature • SinCos encoders • Frequency and direction • SSI encoders • SSI simulated outputs • EnDat encoders • SSI encoders
		Light Blue	SM-Resolver	Resolver interface Feedback interface for resolvers. Simulated quadrature encoder outputs
Feedback		Brown	SM-Encoder Plus	Incremental encoder interface Feedback interface for incremental encoders without commutation signals. No simulated encoder outputs available
		Dark Brown	SM-Encoder Output Plus	Incremental encoder interface Feedback interface for incremental encoders without commutation signals. Simulated encoder output for quadrature, frequency and direction signals
		N/A	15-way D-type converter	Drive encoder input converter Provides screw terminal interface for encoder wiring and spade terminal for shield
		N/A	Single ended encoder interface (15V or 24V)	Single ended encoder interface Provides an interface for single ended ABZ or UVW encoder signals, such as those from hall effect sensors. 15V and 24V versions are available.
		Yellow	SM-I/O Plus	Extended I/O interface Increases the I/O capability by adding the following to the existing I/O in the drive: • Digital inputs x 3 • Analog output (voltage) x 1 • Digital I/O x 3 • Relay x 2
		Yellow	SM-I/O 32	Extended I/O interface Increase the I/O capability by adding the following to the existing I/O in the drive: • High speed digital I/O x 32 • +24V output
Automation		Dark Yellow	SM-I/O Lite	Additional I/O 1 x Analog input (± 10V bi-polar or current modes) 1 x Analog output (0-10V or current modes) 3 x Digital input and 1 x Relay
(I/O Expansion)		Dark Red	SM-I/O Timer	Additional I/O with real time clock As per SM-I/O Lite but with the addition of a Real Time Clock for scheduling drive running
		Turquoise	SM-I/O PELV	Isolated I/O to NAMUR NE37 specifications For chemical industry applications 1 x Analog input (current modes) 2 x Analog outputs (current modes) 4 x Digital input / outputs, 1 x Digital input, 2 x Relay outputs
		Olive	SM-I/O 120V	Additional I/O conforming to IEC 61131-2 120Vac 6 digital inputs and 2 relay outputs rated for 120Vac operation
		Cobalt Blue	SM-I/O 24V Protected	Additional I/O with overvoltage protection up to 48V 2 x Analog outputs (current modes) 4 x Digital input / outputs, 3 x Digital inputs, 2 x Relay outputs

Safety Proc Information inform	duct Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running s the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Table 2-7 Sol	utions Module i		on									
Туре	Solutions N	Nodule	C	olor	Na	me			Further I	Details		
			Dark	Green	SM-Applic	ations	Applications 2 nd processor application so	r for runn	ing pre-def	ined and	/or custom	er created
			W	/hite	SM-Applic	ations Lite	Applications 2 nd processor application so	r for runn		ined and	/or custom	er created
Automation (Applications)			Dar	k Blue	SM-EZMot	lion	Motion Cont 1 ¹ / ₂ axis moti created applie	on contro			for running	customer
-			Moss		SM-Applica Plus	ations	Applications 2 nd processon application so performance Applications	r for runn oftware w over SM	ing pre-def /ith CTNet -Application	ined and support.		er created
			w		SM-Applica V2	ations Lite	/or custom					
					SM-PROF	IBUS-DP	Profibus opt PROFIBUS D		er for comr	nunicatio	ons with the	drive
			Mediu	ım Grey	SM-Device	eNet	DeviceNet of Devicenet ad		communic	ations wi	th the drive	
			Darl	k Grey	SM-INTER	BUS	Interbus opt Interbus adap		ommunicat	ions with	the drive	
				Pink	SM-CAN		CAN option CAN adapter for communications with the drive					
Fieldbus		2	Ligh	t Grey	SM-CANopen		CANopen option CANopen adapter for communications with the drive					
			F	Red	SM-SERCOS		SERCOS option Class B compliant. Torque velocity and position control mo supported with data rates (bit/s): 2MB, 4MB, 8MB and 16f Minimum 250μs network cycle time. Two digital high spee probe inputs 1μs for position capture					
			В	eige	SM-Ethern	iet	Ethernet opt 10 base-T / 1 multiple proto connection	00 base-				
			Brow	vn Red	SM-EtherCAT		EtherCAT option EtherCAT adapter for communications with the drive					
	Pale	Green	SM-LON		LonWorks option LonWorks adapter for communications with the drive							
SLM			Ora	ange	SM-SLM		SLM interface The SM-SLM the Unidrive S following mode • Encoder 0 • Host mode	allows S SP drive des: only mod	and allows			

Safety Product Mechanical Electrical Getting Basic Running Optimization SMARTCAR Information Installation Installation Started parameters the motor Optimization SMARTCAR	Diagnostics	UL Listing nformation
---	-------------	--------------------------

Table 2-8 Keypad identification

Туре	Keypad	Name	Further Details
Keypad	and and a	SM-Keypad	LED keypad option Keypad with a LED display for size 1 to 9
Reypud	A SO	SM-Keypad Plus	LCD keypad option Keypad with an alpha-numeric LCD display with Help function

2.8 Items supplied with the drive

The drive is supplied with a printed manual, a SMARTCARD, a safety information booklet, the Certificate of Quality, and a CD ROM containing all related product documentation and software tools. All accessories (e.g. control connectors) are supplied installed to the drive.

3 **Mechanical Installation**

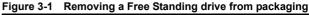
This chapter describes how to use all mechanical details to install the drive. Key features of this chapter include:

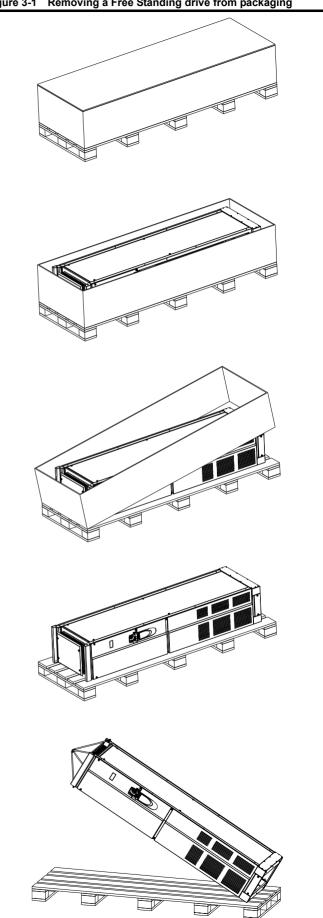
- Baying of Free Standing drives
- Terminal location and torque settings
- Solutions Module installation

3.1 Safety information

Follow the instructions

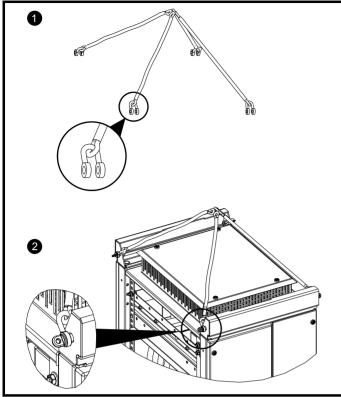
The mechanical and electrical installation instructions must be adhered to. Any guestions or doubt should be referred to the supplier of the equipment. It is the responsibility of the owner or user to ensure that the installation of the drive and any external option unit, and the way in which they are operated and maintained, comply with the requirements of the Health and Safety at Work Act in the United Kingdom or applicable legislation and regulations and codes of practice in the country in which the equipment is used.


Competence of the installer


The drive must be installed by professional assemblers who are familiar with the requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.

The weights of the size 6 to 9 Free Standing drives are as follows: Size 6: 199 kg (438 lb) Size 7: 214 kg (471 lb) Size 8: 266 kg (586 lb)

Size 9: 532 kg (1173 lb)


Lift the drive by the method detailed in Figure 3-2 on page 20. Do not tilt the drive. The centre of gravity of the unit is high. An overturning unit can cause physical injury.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Figure 3-2 Lifting the Free Standing drive

1. Attach "D" shackles to each rope

2. Attach each shackle to the lifting plate. Ensure angle of each rope is ${>}45^{\circ}.$

3.2 Planning the installation

The following considerations must be made when planning the installation:

3.2.1 Access

Access must be restricted to authorized personnel only. Safety regulations which apply at the place of use must be complied with.

The standard Free Standing drive is rated for IP21. An IP23 version is also available.

3.2.2 Environmental protection

The drive must be protected from:

- moisture, including dripping water or spraying water and condensation.
- contamination with electrically conductive material
- contamination with any form of dust which may restrict the fan, or impair airflow over various components
- temperature beyond the specified operating and storage ranges
- corrosive gasses

3.2.3 Cooling

The inlet and outlet vents on the drive must not be restricted or covered. The ambient temperature must not exceed the specified operating temperature of the drive. Some size 8 and size 9 models are installed with a fan in the roof of the enclosure.

Care must be taken when installing Unidrive SP Free Standing drives side by side, to prevent recirculation of heated air. Where a Free Standing drive with no roof fan is installed next to a drive with a roof fan it is recommended that some additional baffling be added between the roof canopies to prevent recirculation of heated air in the drive with no roof fan. If no baffling is added between drives fitted with roof fans and those without a distance of 0.5 metres must be maintained between drives.

Certain Unidrive SP size 6 and 7 Free Standing drives are fitted with smaller roof fans, baffling should also be fitted if installed side by side

with a Unidrive size 8 or 9 Free Standing drive (with larger roof fan) or a distance of 0.5 metres (19.69in) must also be maintained between drives.

A distance of 300mm (11.81in) should be maintained between the top of the Free Standing drive roof canopy and the ceiling of the room in which the Free Standing drive is installed.

Refer to Table 12-8 *Roof mounted fans* on page 236 for details of which Free Standing models have roof fans fitted.

3.2.4 Electrical safety

The installation must be safe under normal and fault conditions. Electrical installation instructions are given in Chapter 4 *Electrical Installation* on page 44.

3.2.5 Electromagnetic compatibility

Variable speed drives are powerful electronic circuits which can cause electromagnetic interference if not installed correctly with careful attention to the layout of the wiring.

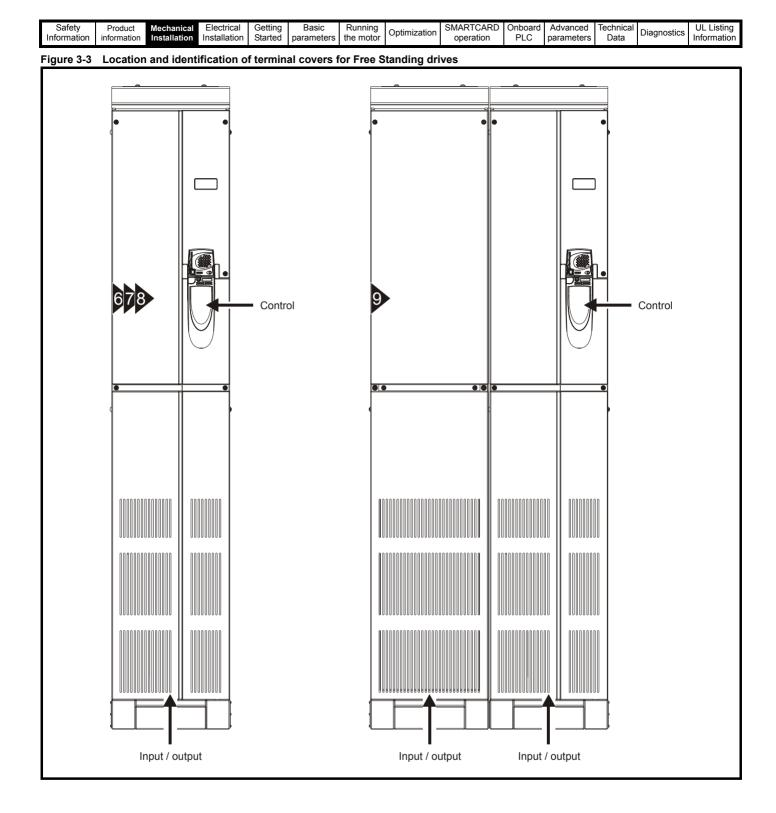
Some simple routine precautions can prevent disturbance to typical industrial control equipment.

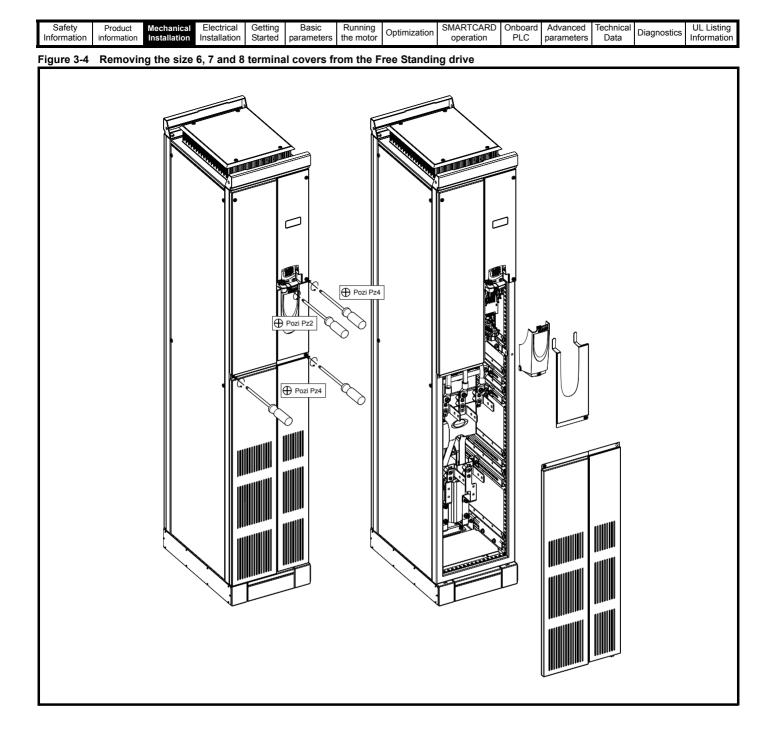
If it is necessary to meet strict emission limits, or if it is known that electromagnetically sensitive equipment is located nearby, then full precautions must be observed. In-built into the drive, is an internal EMC filter, which reduces emissions under certain conditions. If these conditions are exceeded, then the use of an external EMC filter may be required at the drive inputs, which must be located as close to the drive as possible. A suitable location, such as a SP-Incomer Shell, must be made available for the housing filters and allowance made for carefully segregated wiring. Both levels of precautions are covered in section 4.9 *EMC (Electromagnetic compatibility)* on page 59.

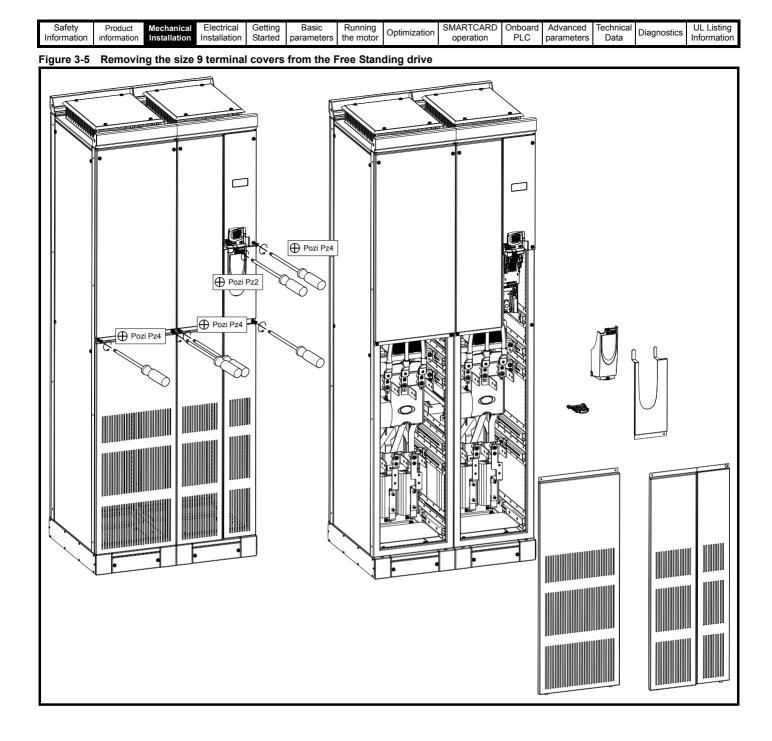
3.2.6 Hazardous areas

The drive must not be located in a classified hazardous area .

3.3 Terminal cover removal

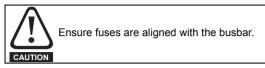

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.



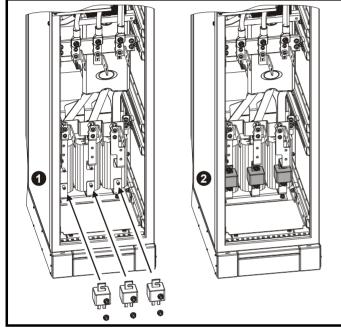

Stored charge

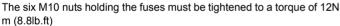
The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.



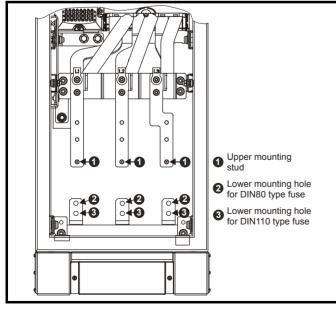
		Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------


3.4 Installing fuses in a Free Standing drive


Fuses must be installed. Free Standing drives can be ordered with or without mains supply fuses. Factory fitted fuses are indicated by a -F1 suffix after the order code. See section 2.1 *Model number* on page 8 for more information on order codes. Alternatively mains supply fuses (type DIN80 only) can be purchased separately from Control Techniques. See Table 4-5 on page 55 for further information.

Instructions for installing fuses on 6 pulse drives are shown in shown in section 3.4.1. See section section 3.5.3 *Electrical connections for baying a size 9 master to slave* for information on installing fuses on 12 pulse drives.

3.4.1 Sizes 6&7 or sizes 8&9 (with date code S17) Figure 3-6 Size 6&7 or sizes 8&9 with date code S17 or earlier



3.4.2 Size 8 & 9 (with date code S18 or later)

Unidrive SP size 8 and 9 Free Standing with date code of S18 or later can accept type DIN80 or type DIN110 fuses.

Figure 3-7 Identification of fuse mounting holes

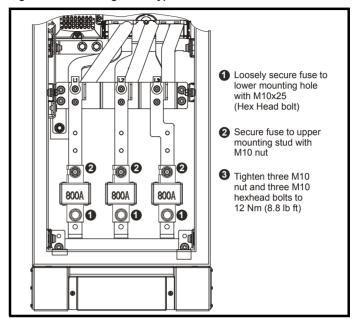
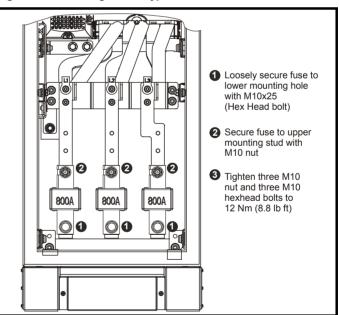
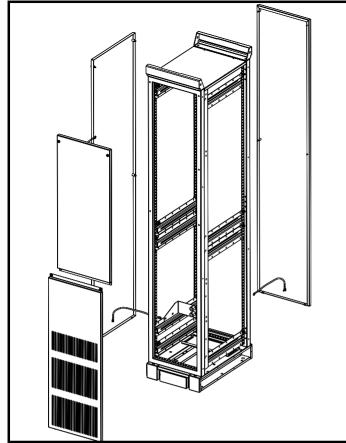



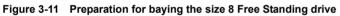
Figure 3-9 Installing DIN110 type fuses

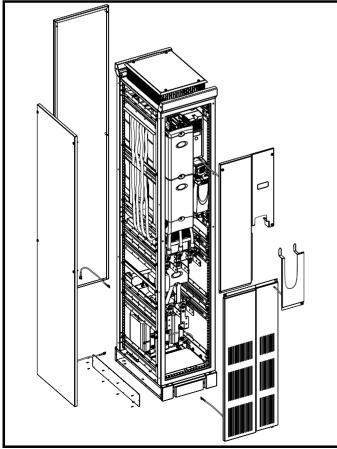
3.5 Baying Free Standing drives

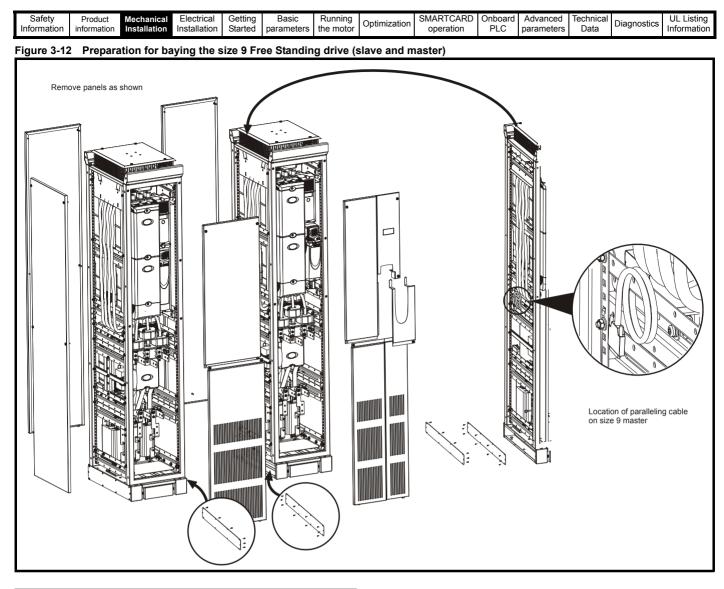
This section describes how to connect or 'bay' the master and slave drives of a size 9 together, or an incomer to a size 8 or 9 Free Standing drive.


3.5.1 Preparation for baying

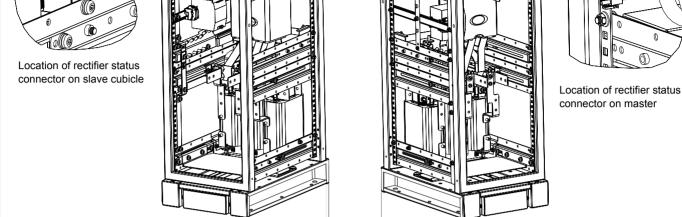
The following diagrams show how to prepare the incomer/applications shell and the size 8 / 9 Free Standing drives for baying.


- 1. Remove all front, rear and side panels as shown. All screws for these are Pozi Pz4
- 2. Disconnect the ground cable connections from the front, rear and side panels by removing the M6 nuts and star washers.


		Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

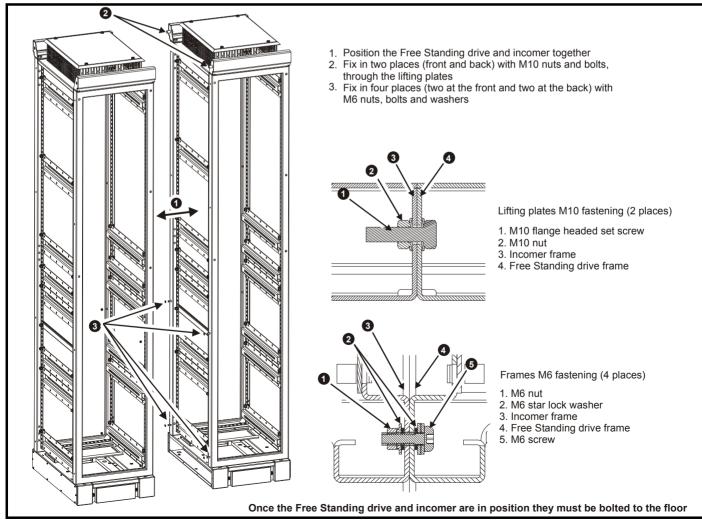

Figure 3-10 Preparation for baying the incomer/applications shell

An incomer shell is supplied with no side panels.



The total weight of the size 9 Free Standing drive is: 532 kg (1173 lb), i.e. 266 kg (586 lb) per enclosure. Lift the drive by the method detailed in Figure 3-2 on page 20.

Do not tilt the drive. The centre of gravity of the unit is high. An overturning unit can cause physical injury.


Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
			ctifier stat	us conr	ectors for	size 9 Fr ঝা	ee Standing	g drive					
Connect si together pi cubicles													
Gabioleo						Ŧ							
	\sim	× _											T
											đ		

3.5.2 Baying of Free Standing drives / incomers

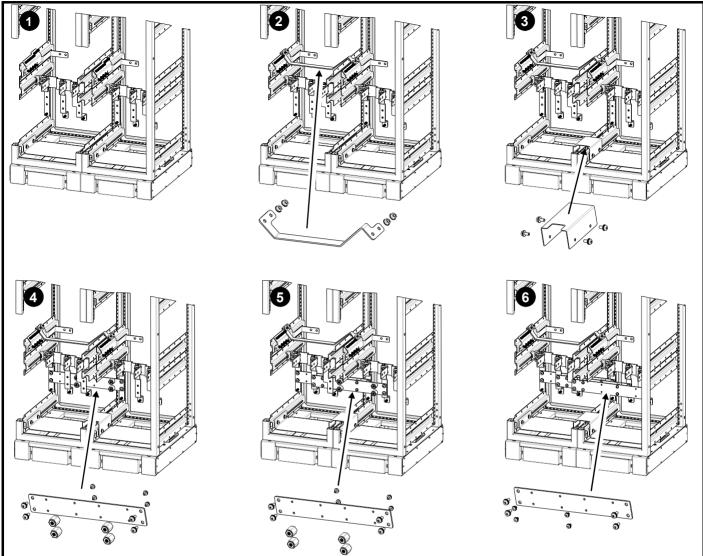
The following generic drawing demonstrates how to bay any type of Free Standing drive or incomer together.

Figure 3-14 Baying of Free Standing drive and incomer

Safet Informat	 Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
				-					-			

3.5.3 Electrical connections for baying a size 9 master to slave Figure 3-15 Installing the parallel cable from a size 9 master to slave

TURNALINA MANANA 0 Remove size 9 slave interface cover 1.


2. Connect the paralleling cable to the size 9 slave input slot

3. Replace size 9 slave interface cover

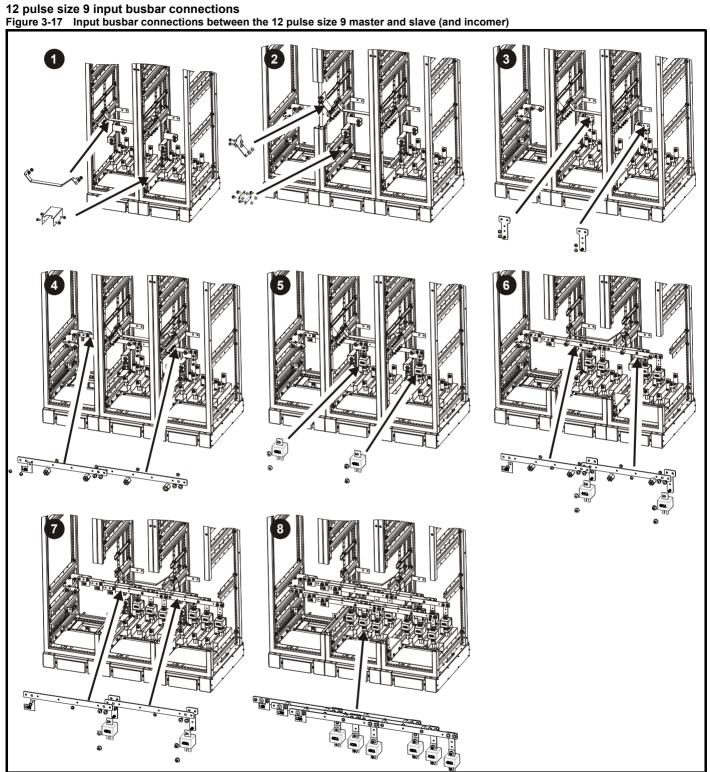
4. Replace all size 9 Free Standing drive panels

Safety Product Mechanical Installation Electrical Installation Getting Basic Running Optimization	n SMARTCARD Onboard Advanced Technical Diagnostics UL Listing Information
---	---

6 pulse size 9 input busbar connections Figure 3-16 Input busbar connections between the 6 pulse size 9 master and slave (and incomer)

Master and slave cubicles bayed together 1.

From the size 9 baying kit:


Fit the safety ground link with (M10 nuts) (torque 20Nm [14.75 lb ft]) 2.

3. Fit the incomer EMC plate with (M8 x 20 screws) (torque 12Nm [8.85 lb ft])

4. & 5. Fit the input parallel busbar with (M8 x 20 screws) (torque 17Nm [12.5 lb ft]); and M6 x 30 insulating spacer with (M6 x 12 screws) (torque 12Nm [8.85 lb ft])

6. Fit the input parallel busbar with (M8 x 20 screws) (torque 17Nm [12.5 lb ft])

Safety Product Mechanical Installation Electrical Installation Getting Basic Running the motor Optimization SMARTCAF		d Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	--	--------------------------	-------------------	-------------	---------------------------

1. Fit the safety ground busbar (top) with supplied M10 nuts and EMC gland joining plate (bottom) with existing M8x20 torx screws

a) Fit the following to the size 8 or 9 slave cubicle: Safety ground busbar (top) with 2 x M10 nuts and EMC baying plate (bottom) with supplied 2 x M8x20 torx screws and 2 x M8 nuts

b) Mechanically bay the 12 pulse incomer cubicle
c) Complete safety and EMC ground connections: Fit supplied 2 x M10 puts and M10 x 25 holds.

c) Complete safety and EMC ground connections: Fit supplied 2 x M10 nuts and M10 x 25 bolts to connect safety ground busbar. Also fit 2 x M8x20 torx screws and M8 nuts to connect EMC baying plate to 12 pulse incomer cubicle.

3. Fit: 2 x 12 pulse busbar fuse links with supplied M6x16 torx screws

4. Fit: 2 x 12 pulse busbars, 4 x 30mm insulator, 6 x M6x16 screws, 4 x M8x20 screws, L1(A) terminal marker

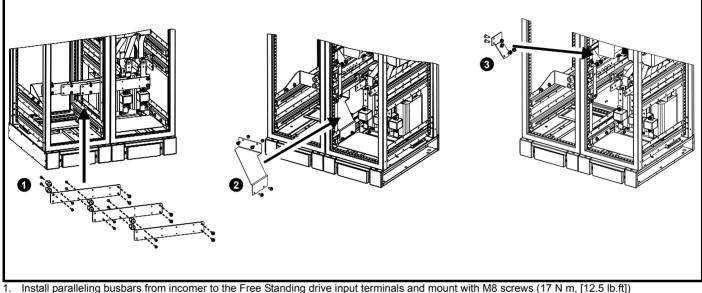
NOTE

Pre-fit insulators to busbars before fitting to cubicle.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5. Fit 400A fuses with 4 x M10 nuts supplied

NOTE

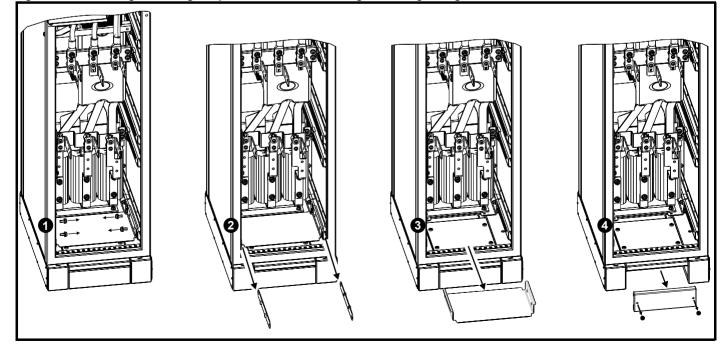

Factory fitted fuses are available as a selectable option, alternatively fuses can be ordered and supplied separately. It is recommended to fit the fuses integral with this baying procedure. The fuses can be easily independently removed should the need arise when in service.

- 6. Fit: 2 x 12 pulse busbars, 2 x 12 pulse busbar fuse links, 4 x 30mm insulators, 8 x M6x16 torx screws, 4 x M8x20 torx screws, 4 x M10 nuts to fit 400A fuses, L2(A) terminal marker
- 7. Fit: 2 x 12 pulse busbars, 2 x 12 pulse busbar fuse links, 4 x M6x16 torx screws, 4 x M8x20 torx screws, 4 x M10 nuts to fit 400A fuses, L3(A) terminal marker
- 8. Repeat procedure for fitting L1(B), L2(B) and L3(B) input busbars

3.5.4 Electrical connections for baying an incomer to size 8 and 9

The following diagrams look at specific features of baying a 6 pulse incomer to a 6 pulse drive, and baying the master and slave cabinets of a 6 pulse size 9 together. All images show the appropriate components exploded and installed.

Figure 3-18 Baying a 6 pulse incomer to a 6 pulse Free Standing drive (size 8 shown)



- Install EMC bracket when EMC filter required
- 3. Install ground clamp

3.5.5 Gland plate removal

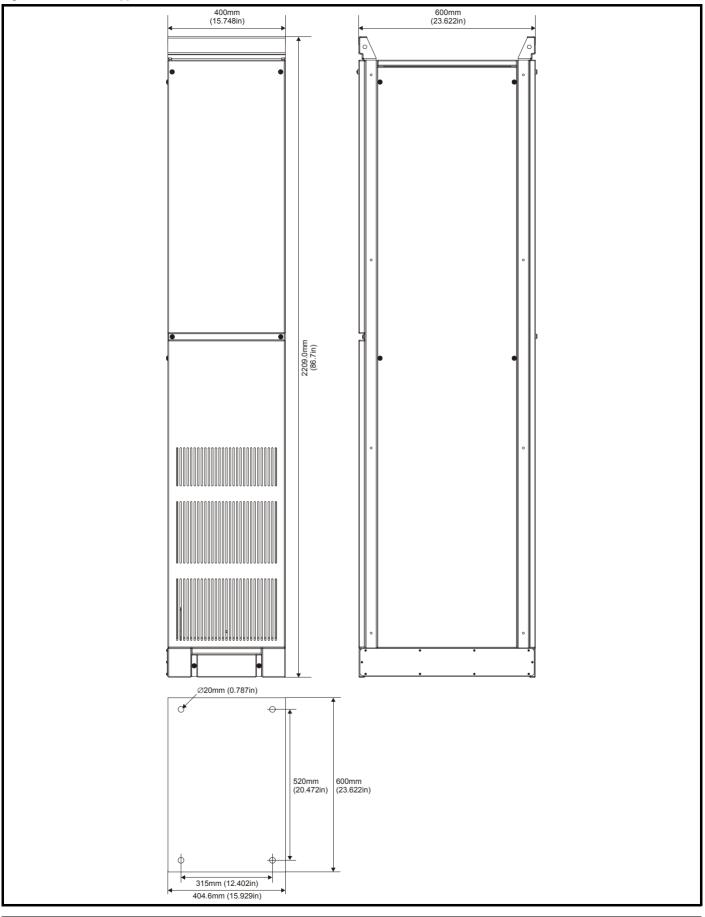
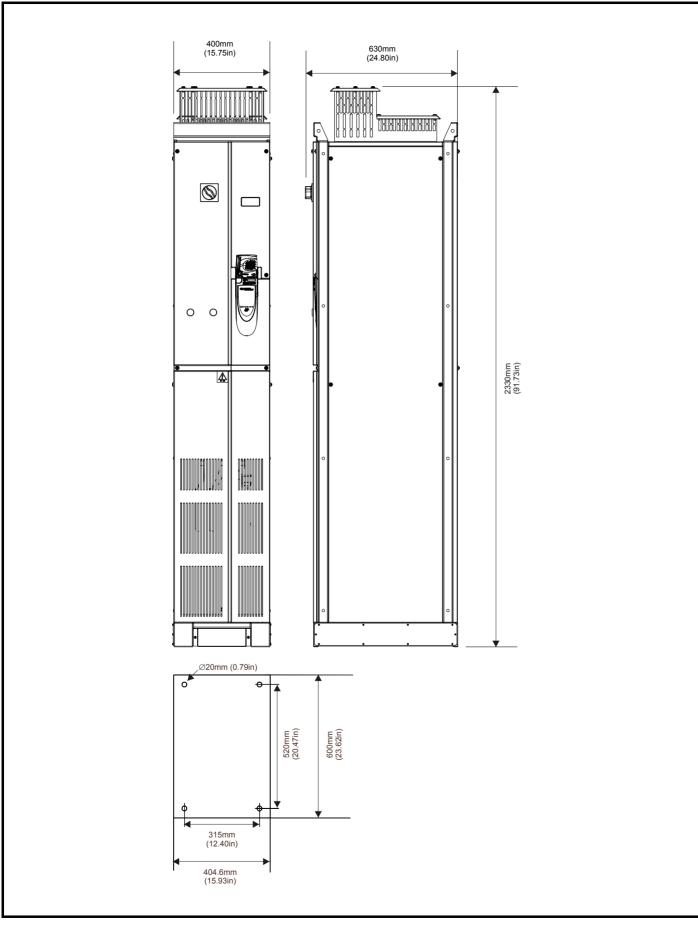

The images below shows how to remove the gland plate from a Free Standing drive.

Figure 3-19 Removing the cable gland plate from the Free Standing drive for "glanding off" the cable


information information installation stated parameters the motor operation PLC parameters bata information	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

3.6 Free standing drive dimensions Figure 3-20 Incomer/applications shell dimensions

Safety InformationProduct informationMechanical InstallationElectrical StartedGetting parametersBasic parametersRunning the motorSMARTCARD operationOnboard PLCAdvanced parametersTechnical DataUL Listing Information
--

Figure 3-21 Size 6 and 7 drives with integral line side options

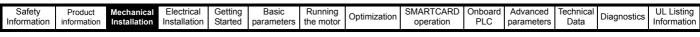
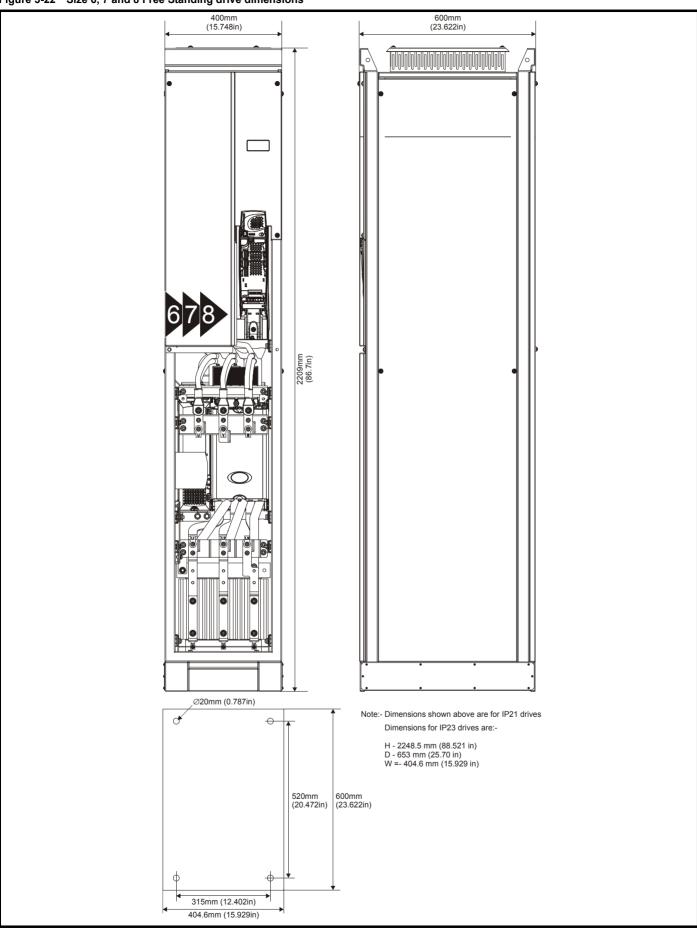
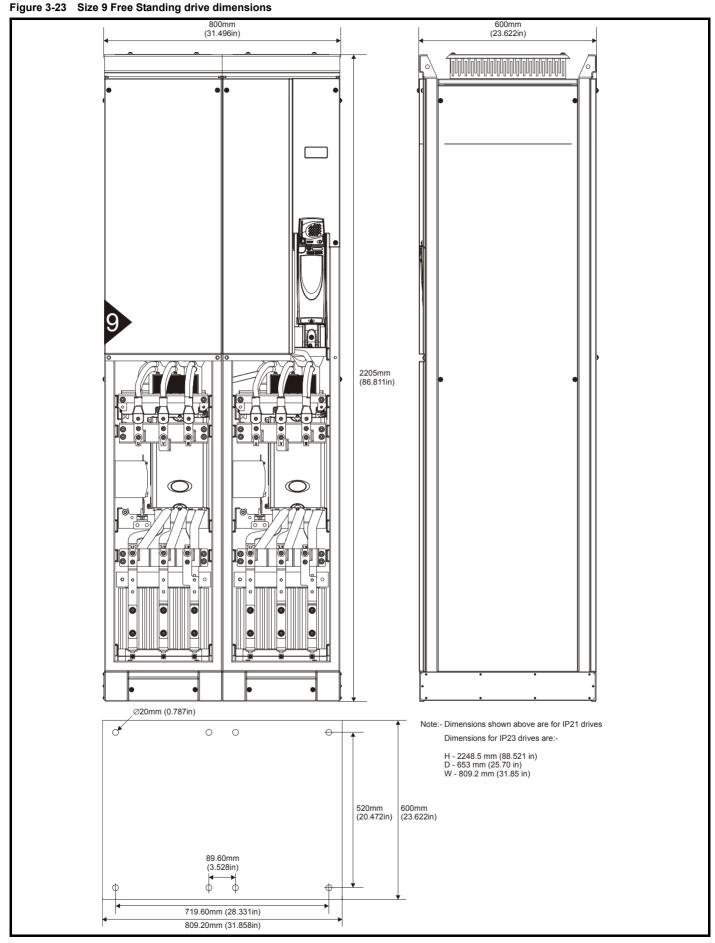




Figure 3-22 Size 6, 7 and 8 Free Standing drive dimensions

	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	---------------------	----------------------------	-------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Unidrive SP Free Standing User Guide Issue Number: 1

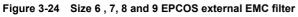
Diagnostics	UL Listing nformation
-------------	--------------------------

3.7 External EMC filter

In order to provide our customers with a degree of flexibility, external EMC filters have been sourced from two manufacturers: Schaffner & Epcos. Filter details for each drive rating are provided in the tables below. Both the Schaffner and Epcos filters meet the same specifications

Table 3-1	Size 6 and 7 Free	Standing drive	EMC filter details
-----------	-------------------	----------------	--------------------

Drive	Epcos				
Drive	CT part no	Weight			
SP64X1	4200-6815	15 kg (33.0 lb)			
SP64X2	4200-6816	21 kg (46.3 lb)			
SP66X1	4200-6804	21 kg (46.3 lb)			
SP66X2	4200-6804	21 kg (46.3 lb)			
SP74X1	4200-6817	21 kg (46.3 lb)			
SP74X2	4200-6817	21 kg (46.3 lb)			
SP76X1	4200-6804	21 kg (46.3 lb)			
SP76X2	4200-6804	21 kg (46.3 lb)			


Table 3-2 Size 8 and 9 Free Standing drive EMC filter details for 6 pulse drives

Drive	Sch	affner	Epcos			
Drive	CT part no.	Weight	CT part no.	Weight		
SP84X1	4200-6808	11 kg (25.3 lb)	4200-6801	22 kg (48.5 lb)		
SP84X2	4200-6808	11 kg (25.3 lb)	4200-6801	22 kg (48.5 lb)		
SP84X3	4200-6808	11 kg (25.3 lb)	4200-6801	22 kg (48.5 lb)		
SP84X4	4200-6809	18 kg (39.7 lb)	4200-6802	28 kg (61.7 lb)		
SP86X1	4200-6811	10.5 kg (23.1 lb)	4200-6804	21 kg (46.3 lb)		
SP86X2	4200-6811	10.5 kg (23.1 lb)	4200-6804	21 kg (46.3 lb)		
SP86X3	4200-6812	10.5 kg (23.1 lb)	4200-6805	21 kg (46.3 lb)		
SP86X4	4200-6812	10.5 kg (23.1 lb)	4200-6805	21 kg (46.3 lb)		
SP94X1	4200-6809	18 kg (39.7 lb)	4200-6802	28 kg (61.7 lb)		
SP94X3	4200-6809	18 kg (39.7 lb)	4200-6802	28 kg (61.7 lb)		
SP94X4	4200-6810	27 kg (59.5 lb)	4200-6803	34 kg (75.0 lb)		
SP94X5	4200-6810	27 kg (59.5 lb)	4200-6803	34 kg (75.0 lb)		
SP96X1	4200-6812	10.5 kg (23.1 lb)	4200-6805	21 kg (46.3 lb)		
SP96X3	4200-6813	11 kg (25.3 lb)	4200-6806	22 kg (48.5 lb)		
SP96X4	4200-6814	18 kg (39.7 lb)	4200-6807	28 kg (61.7 lb)		
SP96X5	4200-6814	18 kg (39.7 lb)	4200-6807	28 kg (61.7 lb)		

NOTE

Contact the supplier of the drive for information on EMC filters for 12 pulse drives.

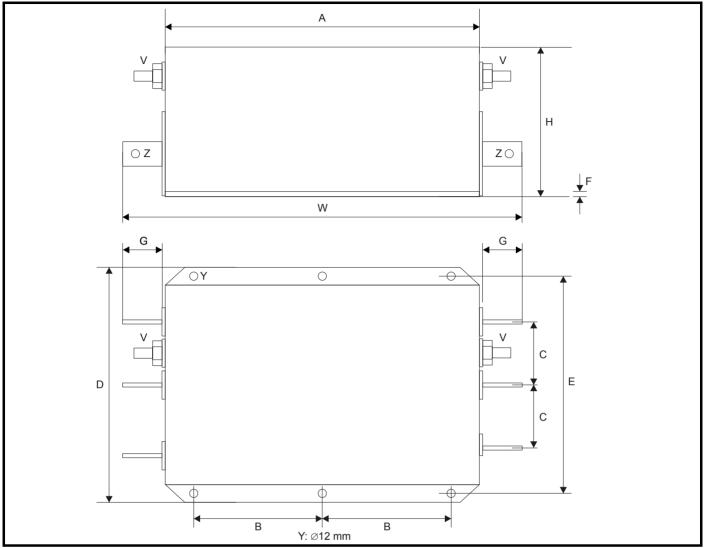


Table 3-3 Size 6, 7, 8 and 9 EPCOS External EMC filter dimensions

CT part no.	Α	В	С	D	E	F	G	Н	W	V	Z
4200 - 6804			60 mm	260 mm	260 mm						
4200 - 6815	300 mm	120±0.5 mm	40 mm	190 mm	190 mm	2 mm			390±2 mm		
4200 - 6816	300 11111	120±0.5 11111		260 mm	2	42±2 mm 116 mm	33012 mm	M10	Ø11		
4200 - 6817			60 mm	260 mm	235 mm						
4200 - 6801	350 mm	145±0.5 mm				3 mm			440±2 mm		
4200 - 6802	550 mm	145±0.5 mm	80 mm	300 mm	275 mm	2.5 mm	52±3 mm	166 mm	460±2 mm		Ø14
4200 - 6803	400 mm	170±0.5 mm	00 11111	300 mm		2.5 11111	92±3 mm	100 11111	590±2 mm	M12	014
4200 - 6805	300 mm	120±0.5 mm	60 mm		235 mm	2 mm	42±3 mm		384±3 mm		Ø11
4200 - 6806	350 mm	145±0.5 mm	00 1111	260 mm	200 11111	2 11111	4213 11111	116 mm	434±3 mm	M10	Ø11
4200 - 6807	550 11111	14510.5 mm	80 mm		275 mm	3 mm	52±3 mm		454±3 mm	WITU	Ø14

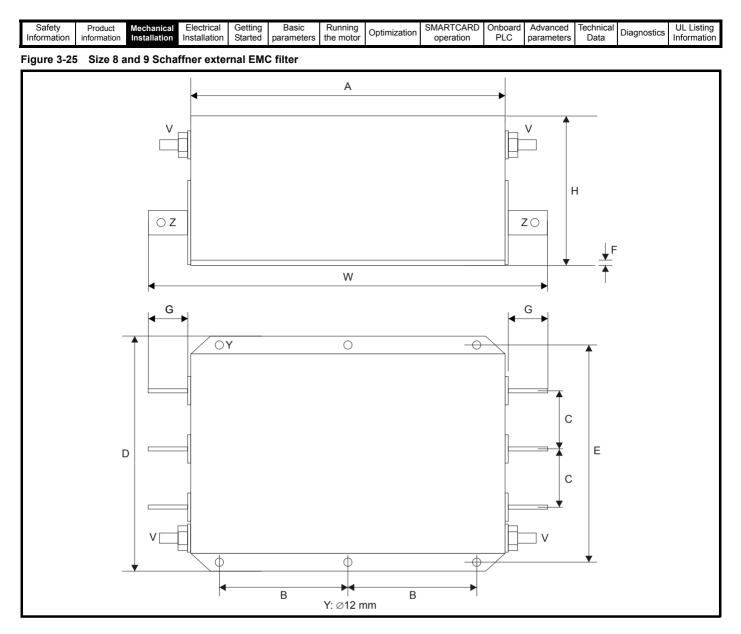
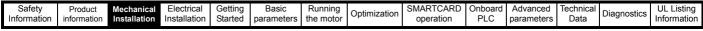
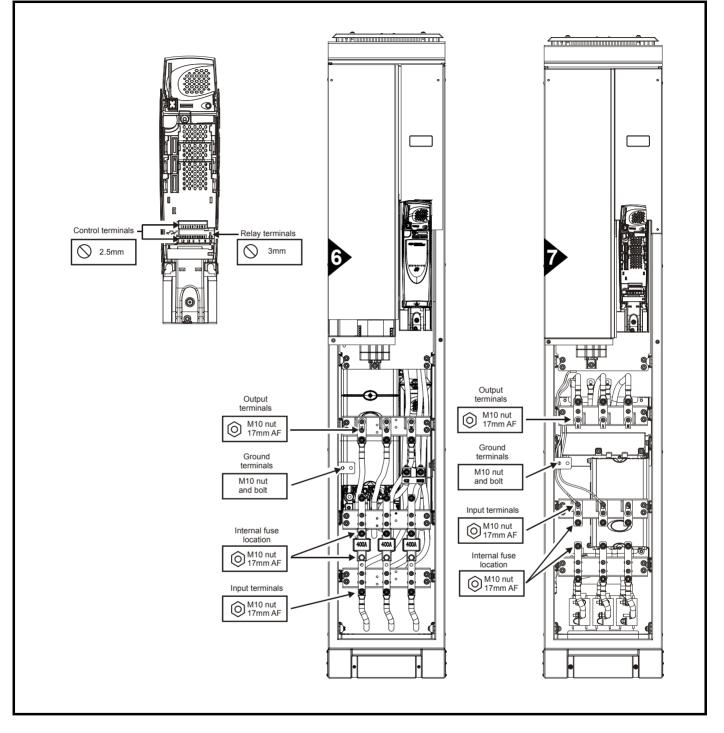
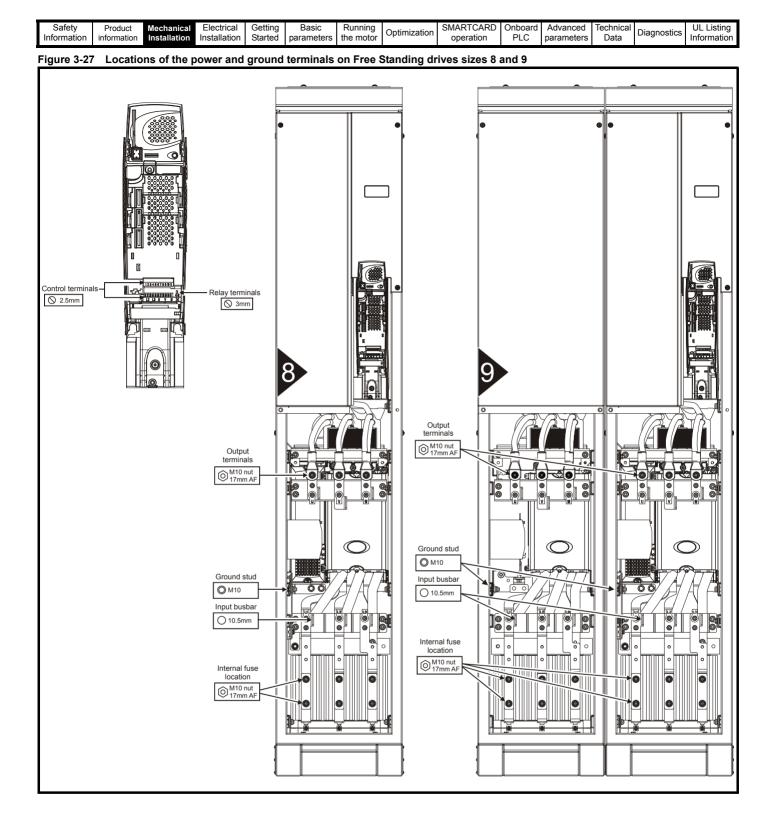



Table 3-4 Schaffner External EMC filter dimensions


CT part no.	Α	В	С	D	E	F	G	Н	w	V	Z
4200-6808								142 mm			
4200-6811	300±1 mm	120±1 mm		260±1 mm	235 mm	2 mm	40 mm		380 mm		Ø10.5
4200-6812	300±1 mm	1201111111		200111111	235 1111	2 11111	40 1111	122 mm	300 11111		010.5
4200-6813			60 mm							M12	
4200-6809	350±1 mm	145±1 mm		280±1 mm	255 mm		50 mm	177 mm	450 mm		
4200-6814	550±1 mm			2001111111	200 11111	3 mm	50 1111		450 mm		Ø14
4200-6810	400±1 mm	170±1 mm		300±1 mm	275 mm		90 mm	160 mm	580 mm		



3.8 Electrical terminals

3.8.1 Location of the power and ground terminals

Figure 3-26 Location of power and ground terminals on Free Standing drives sizes 6 & 7

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	optimization	operation	PLC	parameters	Data	Diagnootioo	Information

3.8.2 Terminal sizes and torque settings

To avoid a fire hazard and maintain validity of the UL listing, adhere to the specified tightening torques for the power and ground terminals. Refer to the following tables.

Table 3-5 Drive control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 N m (0.4 lb ft)

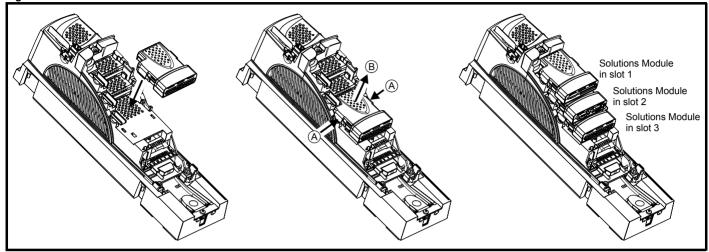
Table 3-6 Terminal data

Model size	AC terminals	DC and braking terminals	Internal fuse	Ground terminal		
6	2 x M10	2 x M10				
7	2 x M10	2 x M10	12 N m (8.8 lb ft)			
8	2 x M10 cleara	•				
9	phase for pa	rallel cables.				
	Torq	ue tolerance		±10%		

Table 3-7 EPCOS external EMC filter terminal data

CT Part	Power Connections	Ground Connections					
Number	Max Torque	Ground Stud Size	Max torque				
4200 - 6804	30 N m	M10	10 N m (7.4 lb ft)				
4200 - 6815	30 N m	M10	10 N m (7.4 lb ft)				
4200 - 6816	30 N m	M10	10 N m (7.4 lb ft)				
4200 - 6817	30 N m	M10	10 N m (7.4 lb ft)				
4200 - 6801	30 N m	M10	10 N m (7.4 lb ft)				
4200 - 6802	60 N m	M12	15.5 N m (11.4 lb ft)				
4200 - 6803	60 N m	M12	15.5 N m (11.4 lb ft)				
4200 - 6805	30 N m	M10	10 N m (7.4 lb ft)				
4200 - 6806	30 N m	M10	10 N m (7.4 lb ft)				
4200 - 6807	60 N m	M12	15.5 N m (11.4 lb ft)				

Table 3-8 Schaffner external EMC Filter terminal data


CT part number	Power connections	Ground connections					
	Max torque	Ground stud size	Max torque				
4200-6808	48 N m	M12					
4200-6811	48 N m	M12					
4200-6812	48 N m	M12					
4200-6813	48 N m	M12					
4200-6809	83 N m	M12					
4200-6814	83 N m	M12					
4200-6810	83 N m	M12					

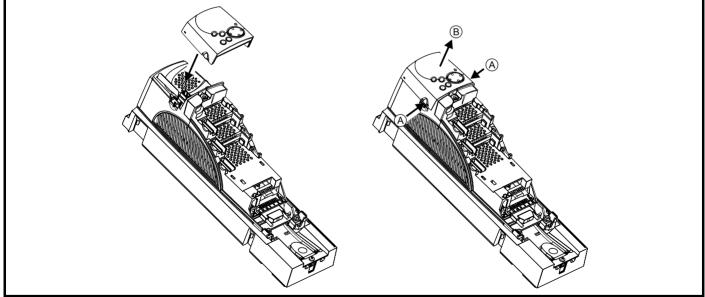
Safety Product Mechanical Electrical Getting Basic Running Optimization SMARTCARD Onboard Advanced Technical Diagnostics	UL Listing Information
--	---------------------------

3.9 Solutions Module installation / removal

Power down the drive before installing / removing the Solutions Module. Failure to do so may result in damage to the product.

Figure 3-28 Installation and removal of a Solutions Module

To install the Solutions Module, press down in the direction shown above until it clicks into place.


To remove the Solutions Module, press inwards at the points shown (A) and pull in the direction shown (B).

The drive has the facility for all three Solutions Module slots to be used at the same time, as illustrated.

NOTE

It is recommended that the Solutions Module slots are used in the following order: slot 3, slot 2 and slot 1.

Figure 3-29 Installation and removal of a keypad

To install, align the keypad and press gently in the direction shown until it clicks into position.

To remove, while pressing the tabs inwards (A), gently lift the keypad in the direction indicated (B).

NOTE

The keypad can be installed / removed while the drive is powered up and running a motor, providing that the drive is not operating in keypad mode.

Safety InformationProduct informationMechanical InstallationElectrical StartedGetting parametersBasic parametersRunning the motorOptimizationSMARTCARD operationOnboard PLCAdvanced parametersTechnical Data	Diagnostics I	UL Listing Information
---	---------------	---------------------------

3.10 Routine maintenance

The drive should be installed in a cool, clean, well ventilated location. Contact of moisture and dust with the drive should be prevented.

Regular checks of the following should be carried out to ensure drive / installation reliability are maximized:

Environment	
Ambient temperature	Ensure the enclosure temperature remains at or below maximum specified
Dust	Ensure the drive remains dust free – check that the heatsink and drive fan are not gathering dust. The lifetime of the fan is reduced in dusty environments.
Moisture	Ensure the drive enclosure shows no signs of condensation
Electrical	
Screw connections	Ensure all screw terminals remain tight
Crimp terminals	Ensure all crimp terminals remains tight – check for any discoloration which could indicate overheating
Cables	Check all cables for signs of damage

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

Electrical Installation 4

Many cable management features have been incorporated into the product, this chapter shows how to optimize them. Key features include:

- SAFE TORQUE OFF (SECURE DISABLE) function
- EMC compliance with shielding / grounding accessories
- Product rating, fusing and cabling information
- Brake resistor details (selection / ratings)

Electric shock risk

The voltages present in the following locations can cause severe electric shock and may be lethal:

- AC supply cables and connections
- DC and brake cables, and connections
- Output cables and connections

Many internal parts of the drive, and external option units Unless otherwise indicated, control terminals are single insulated and must not be touched.

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

STOP function

The STOP function does not remove dangerous voltages from the drive, the motor or any external option units.

SAFE TORQUE OFF (SECURE DISABLE) function The SAFE TORQUE OFF (SECURE DISABLE) function

does not remove dangerous voltages from the drive, the motor or any external option units.

Stored charge

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.

Equipment supplied by plug and socket

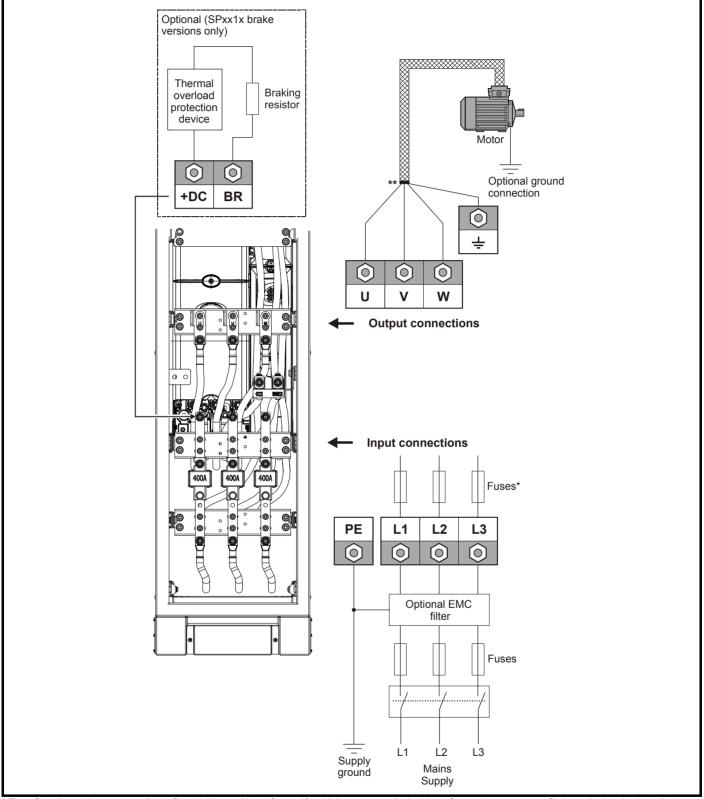
Special attention must be given if the drive is installed in equipment which is connected to the AC supply by a plug and socket. The AC supply terminals of the drive are connected to the internal capacitors through rectifier diodes which are not intended to give safety isolation. If the plug terminals can be touched when the plug is disconnected from the socket, a means of automatically isolating the plug from the drive must be used (e.g. a latching relay).

Permanent magnet motors

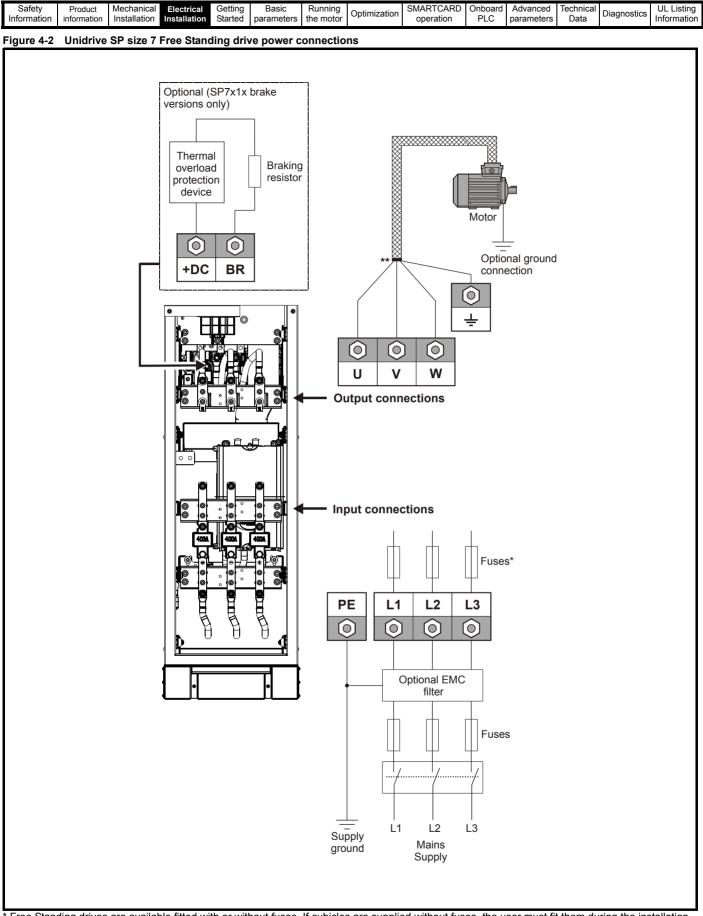
Permanent magnet motors generate electrical power if they are rotated, even when the supply to the drive is disconnected. If that happens then the drive will become energized through its motor terminals. If the motor load is capable of rotating the motor when the

supply is disconnected, then the motor must be isolated from the drive before gaining access to any live parts.

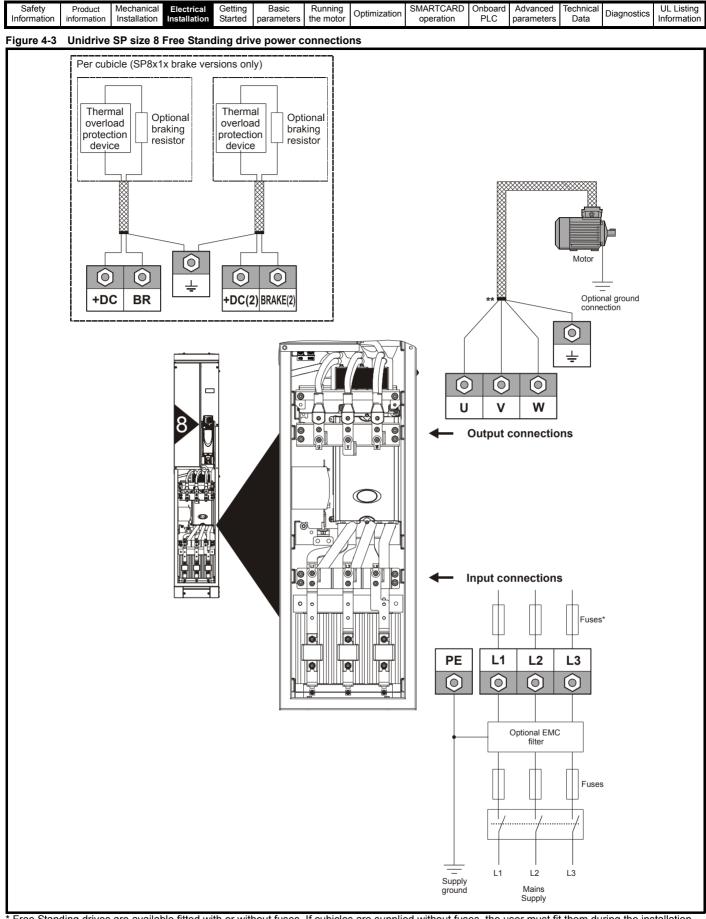
Fuses

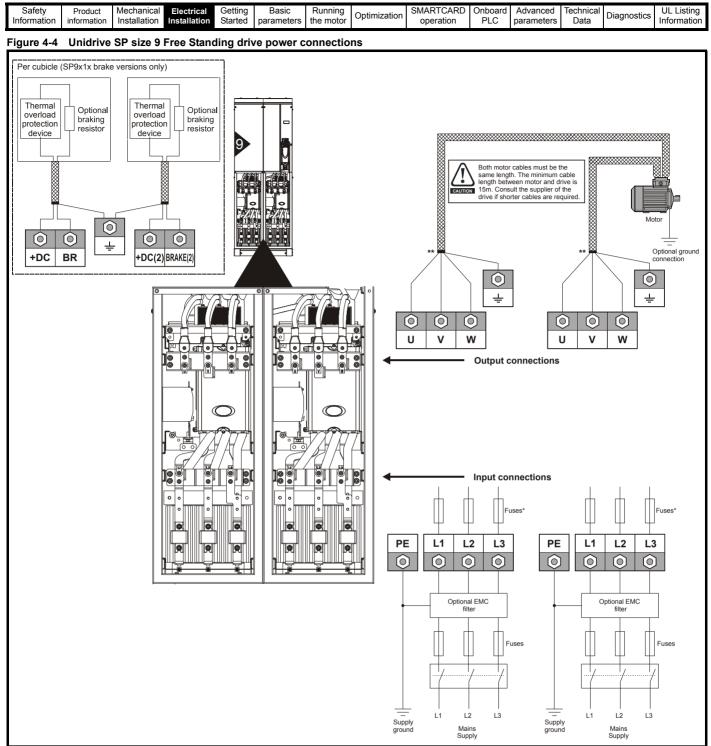

The AC supply to the drive must be installed with suitable protection against overload and short circuits. Table 4-3 on page 54 shows the recommended fuse ratings. Failure to WARNING observe this requirement will increase the risk of fire.

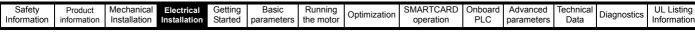
Diagnostics							Optimization		DLC			Diagnostics	UL Listin Informatio
-------------	--	--	--	--	--	--	--------------	--	-----	--	--	-------------	-------------------------


4.1 Power connections

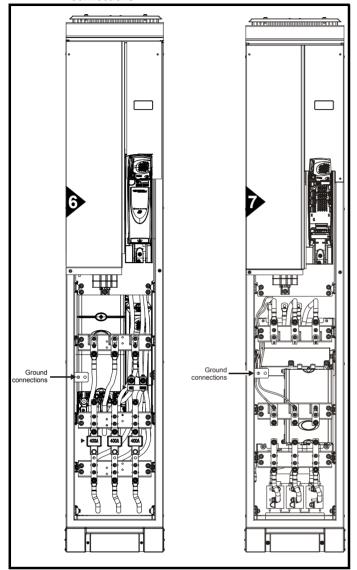
4.1.1 AC and DC connections

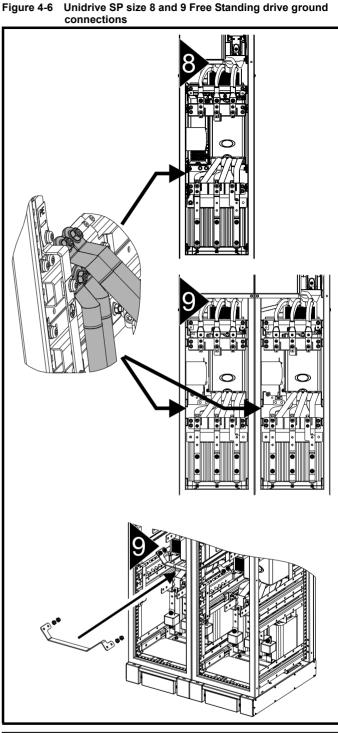

Figure 4-1 Unidrive SP size 6 Free Standing drive power connections


* Free Standing drives are available fitted with or without fuses. If cubicles are supplied without fuses, the user must fit them during the installation. Fuses may be purchased from Control Techniques, see Figure 4-3 on page 54, Figure 4-4 on page 54 and Figure 4-5 on page 55 for more information.


* Free Standing drives are available fitted with or without fuses. If cubicles are supplied without fuses, the user must fit them during the installation. Fuses may be purchased from Control Techniques, see Figure 4-3 on page 54, Figure 4-4 on page 54 and Figure 4-5 on page 55 for more information.

* Free Standing drives are available fitted with or without fuses. If cubicles are supplied without fuses, the user must fit them during the installation. Fuses may be purchased from Control Techniques, see Figure 4-3 on page 54, Figure 4-4 on page 54 and Figure 4-5 on page 55 for more information.




* Free Standing drives are available fitted with or without fuses. If cubicles are supplied without fuses, the user must fit them during the installation. Fuses may be purchased from Control Techniques, see Figure 4-3 on page 54, Figure 4-4 on page 54 and Figure 4-5 on page 55 for more information.

4.1.2 Ground connections

Figure 4-5 Unidrive SP size 6 and 7 Free Standing drive ground connections

The ground loop impedance must conform to the requirements of local safety regulations.

The drive must be grounded by a connection capable of carrying the prospective fault current until the protective device (fuse, etc.) disconnects the AC supply. The ground connections must be inspected and tested at

appropriate intervals.

information installation started parameters the motor ' operation PLC parameters Data ' information	Safety Informat		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	--------------------	--	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

4.2 AC supply requirements

Voltage:

 SPx4xx
 380V to 480V ±10%

 SPx6xx
 500V to 690V ±10%

Number of phases: 3

Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 48 to 65 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to 100kA

4.2.1 Supply types

Drives rated for supply voltage up to 575V are suitable for use with any supply type, i.e. TN-S, TN-C-S, TT, IT, with grounding at any potential, i.e. neutral, centre or corner ("grounded-delta").

Grounded delta supplies >575V are not permitted.

Drives are suitable for use on supplies of installation category III and lower, according to IEC60664-1. This means they may be connected permanently to the supply at its origin in a building, but for outdoor installation additional over-voltage suppression (transient voltage surge suppression) must be provided to reduce category IV to category III.

Operation with IT (ungrounded) supplies:

Special attention is required when using internal or external EMC filters with ungrounded supplies, because in the event of a ground (earth) fault in the motor circuit the drive may not trip and the filter could be over-stressed. In this case, either the filter must not be used (removed) or additional

independent motor ground fault protection must be provided. Refer to Table 4-1.

For details of ground fault protection contact the supplier of the drive.

A ground fault in the supply has no effect in any case. If the motor must continue to run with a ground fault in its own circuit then an input isolating transformer must be provided and if an EMC filter is required it must be located in the primary circuit.

Unusual hazards can occur on ungrounded supplies with more than one source, for example on ships. Contact the supplier of the drive for more information.

Table 4-1 Behavior of the drive in the event of a motor circuit ground (earth) fault with an IT supply

May not trip – precautions May not trip – precautions	Drive size	Internal filter only	External filter (in addition to the internal filter)
6 to 9 • Remove the EMC filter • Use ground leakage relay relay required • Do not use EMC filter • Use ground leakage relay	6 to 9	requiredRemove the EMC filterUse ground leakage	Do not use EMC filterUse ground leakage

4.2.2 Supplies requiring line reactors

Input line reactors reduce the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network.

Where line reactors are to be used, reactance values of approximately 2% are recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2% line reactors permit drives to be used with a supply unbalance of up to 3.5% negative phase sequence (equivalent to 5% voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

• Power factor correction equipment connected close to the drive.

- Large DC drives having no or inadequate line reactors connected to the supply.
- Direct-on-line started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds 20%.

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

All Free Standing drives have internal AC line chokes, so they do not require additional AC line reactors except for cases of excessive phase unbalance or extreme supply conditions.

When required, each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

Reactor current ratings

The current rating of the line reactors should be as follows:

Continuous current rating:

Not less than the continuous input current rating of the drive

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

4.2.3 Input inductor calculation.

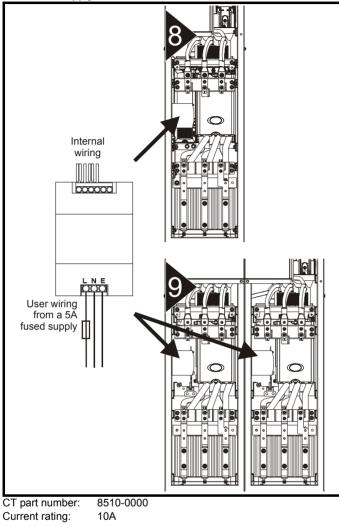
To calculate the inductance required (at Y%), use the following equation:

$$L = \frac{Y}{100} \times \frac{V}{\sqrt{3}} \times \frac{1}{2\pi f I}$$

Where:

I = drive rated input current (A)

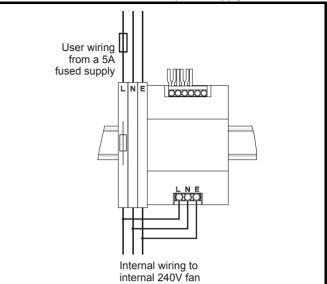
L = inductance (H)

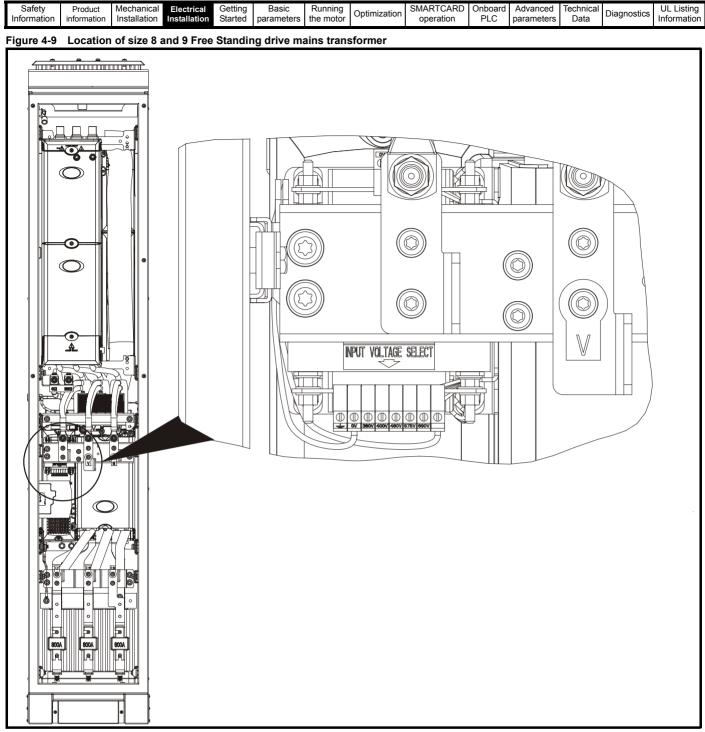

- **f** = supply frequency (Hz)
- V = voltage between lines

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					p					p			

4.3 Auxiliary power supply

Model sizes 8 and 9 with date code Q45 and earlier, require an auxiliary 230V power supply to each enclosure for the roof fan (mounted to SP8XX4 and SP9XX5) and to feed the internal 24V power supply. The 24V power supply is used to supply the rectifier control electronics and the heatsink fans on the power module.




Current rating:10AInput voltage:85 to 123 / 176 to 264Vac auto switchingCable size:0.5mm² (20AWG)Supply fuse:5A slow-blow

For the SP8XX4 and SP9XX5 models, the design of the 24V power supply is different due to the additional fan on the Free Standing drive roof, as shown in Figure 4-8.

Figure 4-8 SP8XX4 and SP9XX5 24V power supply

For all size 6 & 7, and size 8 & 9 units that have a date code of R48 and later, a mains transformer has been introduced for Unidrive SP 8XXX and 9XXX Free Standing drives. The new transformer eliminates the requirement for a separate external 230V power source. A connection from the L1 and L2 input phases is transformed to 230V single phase to supply the AC to DC 24V power supply and directly supply the 230Vac roof fan in the SP84x4 and SP94x5 models.

The transformer has a number of selectable input voltages. As standard, the spur connection from the L1 phase is now parked in the lower right hand terminal during shipment. This parked terminal is not connected to any of the primary windings, therefore depending on variances in the 400V or 690V supply, this cable must be connected by the user to either the 380V, 400V, 480V, 575V or 690V connection.

Until the cable is moved from the parked position to the terminals identified above, the drive will not power up using the three phase supply. The ground and 0V wires are also pre-fitted and must not be changed.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

4.4 Control 24Vdc supply

The 24Vdc input on the Unidrive SP has three main functions.

- It can be used to supplement the drive's own internal 24V when multiple SM-Universal Encoder Plus, SM-Encoder Output Plus or SM-I/O Plus or SM-I/O32 modules are being used, and the current drawn by these modules is greater than the drive can supply. (If too much current is drawn from the drive, the drive will initiate a 'PS.24V' trip).
- It can be used as a back-up power supply to keep the control circuits of the drive powered up when the line power supply is removed. This allows
 any fieldbus modules, application modules, encoders or serial communications to continue to operate.
- It can be used to commission / start the drive when line power supply voltages are not available, as the display operates correctly. However, the
 drive will be in the UV trip state unless the line power supply is present, therefore diagnostics may not be possible. (Power down save parameters
 are not saved when using the 24V back-up power supply input).

The working voltage range of the 24V power supply is as follows:

Maximum continuous operating voltage:	30.0 V
Minimum continuous operating voltage:	19.2 V
Nominal operating voltage:	24.0 V
Minimum start up voltage:	21.6 V
Maximum power supply requirement at 24V:	60 W
Recommended fuse:	3 A, 50 Vdc

Minimum and maximum voltage values include ripple and noise. Ripple and noise values must not exceed 5%.

4.5 Ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the supply fault current given in Table 4-2.

Table 4-2 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

1	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
	intornation	information	motanation	motanation	Otaricu	parameters			operation	I LO	parameters	Data		mormation

 Table 4-3
 400V
 Free Standing drive input current, fuse and cable size rating

	Maximum	HRC	fuse or bre	aker	Semi-			Cable s	ize	
Model	input current	Breaker Rating	HRC IEC class gG	HRC UL class J	conductor IEC class aR		EN6	0204		UL508C
	Α	Α	Α	Α	Α	Input mm ²	Installation method	Output mm ²	Installation method	Input/ Output kcmil/AWG
SP64X1	185	400	250	250	400	1 x 95	С	1 x 120	С	1 x 300 kcmil
SP64X2	213	400	300	300	400	1 x 120	С	1 x 150	С	1 x 350 kcmil
SP74X1	262	400	400	400	400	1 x 185	С	1 x 185	С	1 x 500 kcmil
SP74X2	302	630	425	450	400	1 x 240	С	1 x 240	С	2 x 4/0 AWG
SP84X1	351	630	500	500	400	2 x 120	С	2 x 150	С	2 x 250 kcmil
SP84X2	406	630	630	600	800	2 x 150	С	2 x 185	С	2 x 300 kcmil
SP84X3	492	800	800		800	2 x 240	С	2 x 240	С	2 x 500 kcmil
SP84X4	599	1000	800		800	2 x 240	С	3 x 185	С	3 x 300 kcmil
SP94X1	622	1000	1000		400	4 x 150	С	4 x 185	С	3 x 350 kcmil
SP94X3	713	1250	1250		800	4 x 240	С	4 x 240	С	3 x 500 kcmil
SP94X4	812	1600	1250		800	4 x 240	С	4 x 240	F	3 x 500 kcmil
SP94X5	911	1600	1600		800	4 x 240	F	4 x 240	G	3 x 500 kcmil
SP84X1-P12	2 x 175	2 x 250	250		400	2 x 120	С	2 x 150	С	2 x 250 kcmil
SP84X2-P12	2 x 203	2 x 400	300		400	2 x 150	С	2 x 185	С	2 x 300 kcmil
SP84X3-P12	2 x 246	2 x 400	400		400	2 x 240	С	2 x 240	С	2 x 500 kcmil
SP84X4-P12	2 x 299	2 x 400	425		400	2 x 240	С	4 x 150	С	3 x 300 kcmil
SP94X1-P12	2 x 311	2 x 630	425		400	4 x 150	С	4 x 185	С	3 x 350 kcmil
SP94X3-P12	2 x 356	2 x 630	500		400	4 x 240	С	4 x 240	С	3 x 500 kcmil
SP94X4-P12	2 x 406	2 x 630	630		400	4 x 240	С	4 x 240	F	4 x 500 kcmil
SP94X5-P12	2 x 455	2 x 800	800		400	4 x 240	F	4 x 240	G	4 x 500 kcmil

 Table 4-4
 690V Free Standing drive input current, fuse and cable size rating

	Maximum	HRC	fuse or brea	aker	Semi-			Cable	size		
Model	input current	Breaker Rating	HRC IEC class gG	UL class J	conductor IEC class aR		EN6	0204		UL508C	
	Α	Α	Α	Α	Α	Input mm ²	Installation method	Output mm ²	Installation method	Input/ Output kcmil/AWG	
SP66X1	113	400	300	300	400	1 x 50	С	1 x 50	С	1 x 2/0 AWG	
SP66X2	130	400	300	300	400	1 x 70	С	1 x 70	С	1 x 3/0 AWG	
SP76X1	152	400	250	250	400	1 x 70	С	1 x 95	С	1 x 4/0 AWG	
SP76X2	173	400	250	250	400	1 x 95	С	1 x 95	С	1 x 250 kcmil	
SP86X1	208	400	300	300	400	1 x 120	С	1 x 150	С	1 x 350 kcmil	
SP86X2	240	400	350	350	800	1 x 150	С	1 x 185	С	1 x 400 kcmil	
SP86X3	281	400	400	400	800	1 x 185	С	1 x 240	С	2 x 3/0 AWG	
SP86X4	320	630	500	500	800	1 x 240	С	2 x 120	С	2 x 4/0 AWG	
SP96X1	361	630	500	500	800	2 x 150	С	2 x 150	С	2 x 250 kcmil	
SP96X3	481	800	800		800	2 x 240	С	2 x 240	С	2 x 400 kcmil	
SP96X4	556	800	800		800	2 x 240	С	4 x 150	С	3 x 300 kcmil	
SP96X5	641	1000	1000		800	4 x 150	С	4 x 185	С	3 x 350 kcmil	
SP86X1-P12	2 x 104	2 x 250	200	200	400	2 x 70	С	2 x 70	С	1 x 350 kcmil	
SP86X2-P12	2 x 120	2 x 400	200	200	400	2 x 70	С	2 x 95	С	1 x 400 kcmil	
SP86X3-P12	2 x 140	2 x 400	250	225	400	2 x 95	С	2 x 120	С	2 x 3/0 AWG	
SP86X4-P12	2 x 160	2 x 400	250	250	400	2 x 120	С	2 x 120	С	2 x 4/0 AWG	
SP96X1-P12	2 x 180	2 x 400	250	250	400	2 x 150	С	2 x 150	С	2 x 250 kcmil	
SP96X3-P12	2 x 240	2 x 400	350	350	400	2 x 240	С	2 x 240	С	2 x 400 kcmil	
SP96X4-P12	2 x 278	2 x 400	400	400	400	2 x 240	С	4 x 150	С	3 x 300 kcmil	
SP96X5-P12	2 x 320	2 x 630	500	500	400	4 x 150	С	4 x 185	С	3 x 350 kcmil	

The Semiconductor IEC class aR fuses for sizes 6, 7, 8 and 9 drives must be installed within the enclosure, see Figure on page 24. These parts may be purchased from Control Techniques, see Table 4-5.

Safety Product Mechanical Electrical Getting Basic Running Optimization Information installation Installation Started parameters the motor Optimization	SMARTCARD Onboard Advanced parameters Data Diagnostics UL Listing Information
---	---

Table 4-5 Fuses

Fuse IEC aR	Part No.
400A	4300-0400
800A	4300-0800

Table 4-6 Installation class

Key to t	he cable installation method (ref: IEC60364-5-52:2001)
B1	Separate Cables in Conduit
B2	Multi-core cable in conduit
С	Multi-core cable in free-air
E	On perforated tray
F	Separate cables bunched in groups of three, in free air
G	Individual cables separated vertically in free air

NOTE

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40°C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

NOTE

The recommended output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against overload, the drive must be programmed with the correct motor rated current.

Safety Product Mechanical Electrical Getting Basic Running Information information Installation Installation Started parameters the motor	Optimization SMARTCARD Onboard PLC Advanced parameters Data Diagnostics UL Listing Information
---	--

NOTE

UL listing is dependent on the use of the correct type of UL-listed fuse, and applies when symmetrical short-circuit current does not exceed 100kA. See Chapter 14 UL Listing Information on page 260 for sizing information.

Fuses

The AC supply to the drive must be installed with suitable protection against overload and short-circuits. Table 4-3 on page 54 and Table 4-4 on page 54 show the recommended WARNING fuse ratings. Failure to observe this requirement will cause risk of fire.

A fuse or other protection must be included in all live connections to the AC supply.

See Chapter 14 UL Listing Information on page 260 for UL listing requirements.

Fuse types

The fuse voltage rating must be suitable for the drive supply voltage.

Ground connections

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

4.5.1 Main AC supply contactor

The recommended AC supply contactor type is AC1.

4.6 Output circuit and motor protection

The output circuit has fast-acting electronic short-circuit protection which limits the fault current to typically no more than five times the rated output current, and interrupts the current in approximately 20µs. No additional short-circuit protection devices are required.

The drive provides overload protection for the motor and its cable. For this to be effective, Pr 0.46 Motor rated current must be set to suit the motor

Pr 0.46 Motor rated current must be set correctly to avoid a risk of fire in the event of motor overload.

There is also provision for the use of a motor thermistor to prevent overheating of the motor, e.g. due to loss of cooling.

Cable types and lengths 4.6.1

Since capacitance in the motor cable causes loading on the output of the drive, ensure the cable length does not exceed the values given in Table 4-7.

Use 105°C (221°F) (UL 60/75°C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connections:

- AC supply to external EMC filter (when used)
- AC supply (or external EMC filter) to drive
- Drive to motor
- Drive to braking resistor

Table 4-7 Maximum motor cable lengths

		-				
Model	Maximum Pe	rmissible motor ca	able length			
Model	3 kHz	4 kHz	6 kHz			
SP64X1						
SP64X2	250m	185m	125m			
SP74X1	(820 ft)	(607 ft)	(410 ft)			
SP74X2						
SP84X1						
SP84X2						
SP84X3						
SP84X4	500m	370m	250m			
SP94X1	(1640 ft)	(1241ft)	(820ft)			
SP94X2						
SP94X3						
SP94X4						
SP66X1						
SP66X2	250m	185m	125m (410 ft)			
SP76X1	(820 ft)	(607 ft)				
SP76X2						
SP86X1						
SP86X2						
SP86X3						
SP86X4	500m	370m	250m			
SP96X1	(1640 ft)	(1241ft)	(820ft)			
SP96X3						
SP96X4						
SP96X5						

Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the drive

The default switching frequency is 3kHz for open-loop and closedloop vector and 6kHz for servo.

High-capacitance cables

The maximum cable length is reduced from that shown in Table 4-7, if high capacitance motor cables are used.

Most cables have an insulating jacket between the cores and the armor or shield: these cables have a low capacitance and are recommended. Cables that do not have an insulating jacket tend to have high

capacitance; if a cable of this type is used, the maximum cable length is half that quoted in the tables. (Figure 4-10 shows how to identify the two types.)

Figure 4-10 Cable construction influencing the capacitance

Normal capacitance Shield or armour separated from the cores

High capacitance Shield or armour close to the cores

The cable used for Table 4-7 is shielded and contains four cores. Typical capacitance for this type of cable is 130pF/m (i.e. from one core to all others and the shield connected together).

4.6.2 Motor winding voltage

The PWM output voltage can adversely affect the inter-turn insulation in the motor. This is because of the high rate of change of voltage, in conjunction with the impedance of the motor cable and the distributed nature of the motor winding.

Safety InformationProduct informationMechanical InstallationElectrical GettingGetting StartedBasic parametersRunning the motorOptimizationSMARTCARD operationOnboard PLCAdvanced parametersTechnical DataDiagnosticsUL Diagnostics
--

For normal operation with AC supplies up to 500Vac and a standard motor with a good quality insulation system, there is no need for any special precautions. In case of doubt the motor supplier should be consulted.

Special precautions are recommended under the following conditions, but only if the motor cable length exceeds 10m:

- AC supply voltage exceeds 500V
- Operation of 400V drive with continuous or very frequent sustained braking
- Multiple motors connected to a single drive

For multiple motors, the precautions given in section 4.6.3 *Multiple motors* should be followed.

For the other cases listed, it is recommended that an inverter-rated motor be used. This has a reinforced insulation system intended by the manufacturer for repetitive fast-rising pulsed voltage operation.

Users of 575V NEMA rated motors should note that the specification for inverter-rated motors given in NEMA MG1 section 31 is sufficient for motoring operation but not where the motor spends significant periods braking. In that case an insulation peak voltage rating of 2.2kV is recommended.

If it is not practical to use an inverter-rated motor, an output choke (inductor) should be used. The recommended type is a simple iron-cored component with a reactance of about 2%. The exact value is not critical. This operates in conjunction with the capacitance of the motor cable to increase the rise-time of the motor terminal voltage and prevent excessive electrical stress.

4.6.3 Multiple motors

Open-loop only

If the drive is to control more than one motor, one of the fixed V/F modes should be selected (Pr **5.14** = Fd or SrE). Make the motor connections as shown in Figure 4-11 and Figure 4-12. The maximum cable lengths in Table 4-7 apply to the sum of the total cable lengths from the drive to each motor.

It is recommended that each motor is connected through a protection relay since the drive cannot protect each motor individually. For λ connection, a sinusoidal filter or an output inductor must be connected as shown in Figure 4-12, even when the cable lengths are less than the maximum permissible. For details of inductor sizes refer to the supplier of the drive.

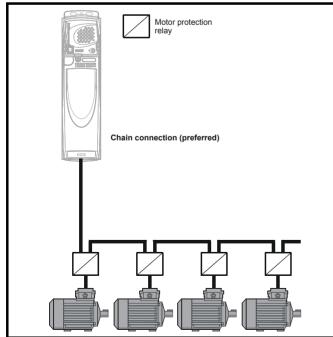
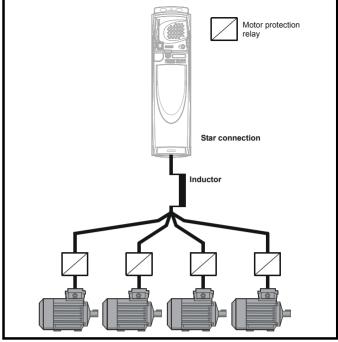



Figure 4-12 Alternative connection for multiple motors

4.6.4 \land / \triangle motor operation

The voltage rating for ${\bf A}$ and Δ connections of the motor should always be checked before attempting to run the motor.

The default setting of the motor rated voltage parameter is the same as the drive rated voltage, i.e.

400V drive 400V rated voltage 690V drive 690V rated voltage

A typical 3 phase motor would be connected in \bigstar for 400V operation or Δ for 200V operation, however, variations on this are common e.g. \bigstar 690V Δ 400V

Incorrect connection of the windings will cause severe under or over fluxing of the motor, leading to a very poor output torque or motor saturation and overheating respectively.

4.6.5 Output contactor

If the cable between the drive and the motor is to be interrupted by a contactor or circuit breaker, ensure that the drive is disabled before the contactor or circuit breaker is opened or closed. Severe arcing may occur if this circuit is interrupted with the motor running at high current and low speed.

A contactor is sometimes required to be installed between the drive and motor for safety purposes.

The recommended motor contactor is the AC3 type.

Switching of an output contactor should only occur when the output of the drive is disabled.

Opening or closing of the contactor with the drive enabled will lead to:

- 1. OI.AC trips (which cannot be reset for 10 seconds)
- 2. High levels of radio frequency noise emission
- 3. Increased contactor wear and tear

The Drive Enable terminal (T31) when opened provides a SECURE DISABLE function. This can in many cases replace output contactors.

For further information see section 4.13 SAFE TORQUE OFF (SECURE DISABLE) on page 69.

Safety Product Mechanical Electrical Getting Basic Running Information information Installation Installation Started parameters the motor	Optimization SMARTCARD Onboard PLC Advanced parameters Data Diagnostics UL Listing Information
---	--

4.7 Braking

Braking occurs when the drive is decelerating the motor, or is preventing the motor from gaining speed due to mechanical influences. During braking, energy is returned to the drive from the motor.

When the motor is being braked by the drive, the maximum regenerated power that the drive can absorb is equal to the power dissipation (losses) of the drive.

When the regenerated power is likely to exceed these losses, the DC bus voltage of the drive increases. Under default conditions, the drive brakes the motor under PI control, which extends the deceleration time as necessary in order to prevent the DC bus voltage from rising above a user defined set-point.

If the drive is expected to rapidly decelerate a load, or to hold back an overhauling load, a braking resistor must be installed.

Table 4-8 shows the DC voltage level at which the drive turns on the braking transistor.

Table 4-8 Braking transistor turn on voltage

Drive voltage rating	DC bus voltage level
400V	780V
690V	1120V

NOTE

When a braking resistor is used, $\mathsf{Pr}\,\mathbf{0.15}$ should be set to FASt ramp mode.

High temperatures

Braking resistors can reach high temperatures. Locate braking resistors so that damage cannot result. Use cable having insulation capable of withstanding high temperatures.

4.7.1 Braking resistor

Overload protection

When a braking resistor is used, it is essential that an

overload protection device is incorporated in the braking

resistor circuit; this is described in Figure 4-13 on page 59.

Ensure that the braking resistor is mounted in a ventilated metal housing that will perform the following functions:

- · Prevent inadvertent contact with the resistor
- Allow adequate ventilation for the resistor

When compliance with EMC emission standards is required, external connection requires the cable to be armored or shielded, since it is not fully contained in a metal enclosure.

Internal connection does not require the cable to be armored or shielded.

Minimum resistances and power ratings

 Table 4-9
 Minimum resistance values and peak power rating for

the braking resistor at 40°C (104°F)

		, ,	
Model	Minimum resistance*Ω	Instantaneous Power Rating (kW)	Average Power for 60s (kW)
SP64X1	5Ω resistor	122	90
SP64X2	052100101	122	110
SP74X1	3.8Ω resistor	160	132
SP74X2	5.01216515101	100	160
SP84X1	$2 \times 5\Omega$ resistors	244	180
SP84X2	2 X 312 163131013	244	220
SP84X3	2 x 3.8Ω resistors	320	254
SP84X4	2 × 0.012 103131013	520	320
SP94X1	4 x 5Ω resistors	488	360
SP94X3	4 X 512 TESISIONS	400	440
SP94X4	4 x 3.8Ω resistors	640	528
SP94X5	4 X 3.012 TESISIOIS	040	640
SP66X1	10Ω resistor	125	83
SP66X2	102210313101	125	112
SP76X1	6.2Ω resistor	202	136
SP76X2	0.21216313101	202	198
SP86X1	2 x 10Ω resistors	250	166
SP86X2	2 1 1022103131015	250	225
SP86X3	2 x 6.20 resistors	404	261
SP86X4	2 × 0.232 163131013	-0-	396
SP96X1	4 x 10Ω resistors	500	333
SP96X3		500	450
SP96X4	4 x 6.2Ω resistors	808	544
SP96X5	- 7 0.232 100101010	000	792

* Resistor tolerance: ±10%

NOTE

Connections from the brake resistor should be kept separate. The resistor tolerance should not be more than \pm 10 % and the resistor should be matched to within \pm 5%.

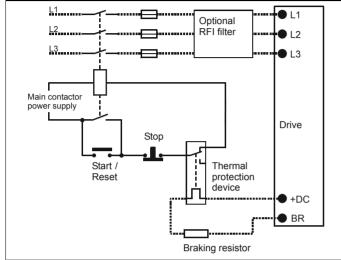
On SP Size 8, 12 pulse drives the DC bus connections are commoned between the SPMD modules, hence one braking resistor can be used when braking power required is low.

On SP Size 9, 12 pulse drives the DC bus connections are commoned between the SPMD modules in each enclosure, but this is not connected between the enclosures, hence two bake resistors (one resistor with each enclosure) can be used when the required braking power is low.

For high-inertia loads or under continuous braking, the *continuous power* dissipated in the braking resistor may be as high as the power rating of the drive. The total *energy* dissipated in the braking resistor is dependent on the amount of energy to be extracted from the load.

The instantaneous power rating refers to the short-term maximum power dissipated during the *on* intervals of the pulse width modulated braking control cycle. The braking resistor must be able to withstand this dissipation for short intervals (milliseconds). Higher resistance values require proportionately lower instantaneous power ratings.

In most applications, braking occurs only occasionally. This allows the continuous power rating of the braking resistor to be much lower than the power rating of the drive. It is essential, though, that the instantaneous power rating and energy rating of the braking resistor are sufficient for the most extreme braking duty that is likely to be encountered.


Optimization of the braking resistor requires a careful consideration of the braking duty.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostica	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Select a value of resistance for the braking resistor that is not less than the specified minimum resistance. Larger resistance values may give a cost saving, as well as a safety benefit in the event of a fault in the braking system. Braking capability will then be reduced, which could cause the drive to trip during braking if the value chosen is too large.

Thermal protection circuit for the braking resistor

The thermal protection circuit must disconnect the AC supply from the drive if the resistor becomes overloaded due to a fault. Figure 4-13 shows a typical circuit arrangement.

Figure 4-13 Typical protection circuit for a braking resistor

4.7.2 Braking resistor software overload protection

The Unidrive SP software contains an overload protection function for a braking resistor. In order to enable and set-up this function, it is necessary to enter two values into the drive:

- Resistor short-time overload time (Pr 10.30)
- Resistor minimum time between repeated short-time overloads (Pr 10.31)

This data should be obtained from the manufacturer of the braking resistors.

Pr **10.39** gives an indication of braking resistor temperature based on a simple thermal model. Zero indicates the resistor is close to ambient and 100% is the maximum temperature the resistor can withstand. An OVLd alarm is given if this parameter is above 75% and the braking IGBT is active. An It.br trip will occur if Pr **10.39** reaches 100%, when Pr **10.37** is set to 0 (default value) or 1.

If Pr **10.37** is equal to 2 or 3 an It.br trip will not occur when Pr **10.39** reaches 100%, but instead the braking IGBT will be disabled until Pr **10.39** falls below 95%. This option is intended for applications with parallel connected DC buses where there are several braking resistors, each of which cannot withstand full DC bus voltage continuously. With this type of application it is unlikely the braking energy will be shared equally between the resistors because of voltage measurement tolerances within the individual drives. Therefore with Pr **10.37** set to 2 or 3, then as soon as a resistor has reached its maximum temperature the drive will disable the braking IGBT, and another resistor on another drive will take up the braking energy. Once Pr **10.39** has fallen below 95% the drive will allow the braking IGBT to operate again.

See the *Unidrive SP Advanced User Guide* for more information on Pr **10.30**, Pr **10.31**, Pr **10.37** and Pr **10.39**.

This software overload protection should be used in addition to an external overload protection device.

4.8 Ground leakage

The ground leakage current is dependant on whether the internal EMC filter is fitted or not. By default, the drive is supplied with the filter installed.

Size 6 to 9 Free Standing: 56mA* AC at 400V 50Hz

18µA DC with a 600V DC bus (33M $\Omega)$

* Proportional to the supply voltage and frequency.

Note that there is an internal voltage surge protection device connected to ground. Under normal circumstances this carries negligible current.

When the internal filter is installed the leakage current is high. In this case a permanent fixed ground connection must be provided, or other suitable measures taken to prevent a safety hazard occurring if the connection is lost.

4.8.1 Use of residual current device (RCD)

There are three common types of ELCB / RCD:

- 1. AC detects AC fault currents
- 2. A detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)
- 3. B detects AC, pulsating DC and smooth DC fault currents
 - Type AC should never be used with drives.
 - Type A can only be used with single phase drives
 - Type B must be used with three phase drives

Only type B ELCB / RCD are suitable for use with 3 phase inverter drives.

If an external EMC filter is used, a delay of at least 50ms should be incorporated to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energized simultaneously.

4.9 EMC (Electromagnetic compatibility)

The requirements for EMC are divided into three levels in the following three sections:

- Section 4.9.2 General requirements for EMC Ground (earth) connections for all applications, to ensure reliable operation of the drive and minimize the risk of disturbing nearby equipment. The immunity standards specified in Surge immunity of control circuits long cables and connections outside a building on page 62 will be met, but no specific emission standards. Note also the special requirements given in Surge immunity of control circuits - long cables and connections outside a building Surge immunity of control circuits - long cables and connections outside a building on page 62 for increased surge immunity of control circuits where control wiring is extended.
- Section 4.9.3 Compliance with EN 61800-3 (standard for Power Drive Systems), requirements for meeting the EMC standard for power drive systems, IEC61800-3 (EN61800-3).
- Section 4.9.4 Variations in the EMC wiring Interruptions to the motor cable, requirements for meeting the generic emission. Standards for the industrial environment, IEC61000-6-4, EN61000-6-4, EN50081-2.

The recommendations of section 4.9.2 will usually be sufficient to avoid causing disturbance to adjacent equipment of industrial quality. If particularly sensitive equipment is to be used nearby, or in a non-industrial environment, then the recommendations of section 4.9.3 or section 4.9.4 should be followed to give reduced radio-frequency emission.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	-------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

In order to ensure the installation meets the various emission standards described in:

- The Declaration of Conformity at the front of this manual.
- Chapter 12 Technical Data on page 233.

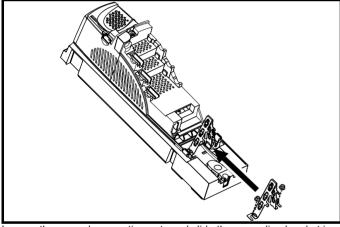
The correct external EMC filter must be used and all of the guidelines in section 4.9.2 must be followed.

High ground leakage current

When an EMC filter is used, a permanent fixed ground

connection must be provided which does not pass through a connector or flexible power cord. This includes the internal WARNING EMC filter.

The installer of the drive is responsible for ensuring compliance with the EMC regulations that apply where the drive is to be used.


Grounding hardware 4.9.1

The master/slave interface is supplied with a grounding clamp and a grounding bracket to facilitate EMC compliance. They provide a convenient method for direct grounding of cable shields without the use of "pig-tails". Cable shields can be bared and clamped to the grounding

bracket using metal clips or clamps¹ (not supplied) or cable ties. Note that the shield must in all cases be continued through the clamp to the intended terminal on the drive, in accordance with the connection details for the specific signal.

¹A suitable clamp is the Phoenix DIN rail mounted SK14 cable clamp (for cables with a maximum outer diameter of 14mm). Figure 4-14 shows details for the installation of the grounding bracket.

Figure 4-14 Installation of grounding bracket (master/slave)

Loosen the ground connection nuts and slide the grounding bracket in the direction shown. Once in place, re-tighten the ground connection nuts

A faston tab is located on the grounding bracket for the purpose of connecting the drive 0V to ground should the user require to do so.

4.9.2 General requirements for EMC Ground (earth) connections

If ground connections are made using a separate cable, they should run parallel to the appropriate power cable to minimize emissions.

If the control circuit OV is to be grounded, this should be done at the system controller only to avoid injecting noise currents into the 0V circuit.

The incoming supply ground should be connected to the earth/ground terminal inside the cubicle. This should be used as a common 'clean' ground for all components inside the drive.

Use four core cable to connect the motor to the drive. The ground conductor in the motor cable must be connected directly to the earth/ ground terminal of the drive and motor. It must not be connected directly to the power earth/ground busbar.

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the motor cable, to avoid this noise current spreading through the control system.

Feedback device cable shielding

Shielding considerations are important for PWM drive installations due to the high voltages and currents present in the output (motor) circuit with a very wide frequency spectrum, typically from 0 to 20 MHz.

The following guidance is divided into two parts:

- 1. Ensuring correct transfer of data without disturbance from electrical noise originating either within the drive or from outside.
- 2. Additional measures to prevent unwanted emission of radio frequency noise. These are optional and only required where the installation is subject to specific requirements for radio frequency emission control.

To ensure correct transfer of data, observe the following:

Resolver connections:

- Use a cable with an overall shield and twisted pairs for the resolver signals.
- Connect the cable shield to the drive 0V connection by the shortest possible link ("piqtail").
- It is generally preferable not to connect the cable shield to the resolver. However in cases where there is an exceptional level of common-mode noise voltage present on the resolver body, it may be helpful to connect the shield there. If this is done then it becomes essential to ensure the absolute minimum length of "pigtails" at both shield connections, and possibly to clamp the cable shield directly to the resolver body and to the drive grounding bracket.
- The cable should preferably not be interrupted. If interruptions are unavoidable, ensure the absolute minimum length of "pigtail" in the shield connections at each interruption.

Encoder connections:

- Use a cable with the correct impedance.
- Use a cable with individually shielded twisted pairs.
- Connect the cable shields to 0V at both the drive and the encoder, using the shortest possible links ("pigtails").
- The cable should preferably not be interrupted. If interruptions are unavoidable, ensure the absolute minimum length of "pigtail" in the shield connections at each interruption. Preferably, use a connection method which provides substantial metallic clamps for the cable shield terminations.

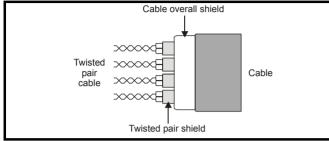
The above applies where the encoder body is isolated from the motor and where the encoder circuit is isolated from the encoder body. Where there is no isolation between the encoder circuits and the motor body, and in case of doubt, the following additional requirement must be observed. This gives the best possible noise immunity.

The shields must be directly clamped to the encoder body (no pigtail) and to the drive grounding bracket. This may be achieved by clamping of the individual shields or by providing an additional overall shield which is clamped.

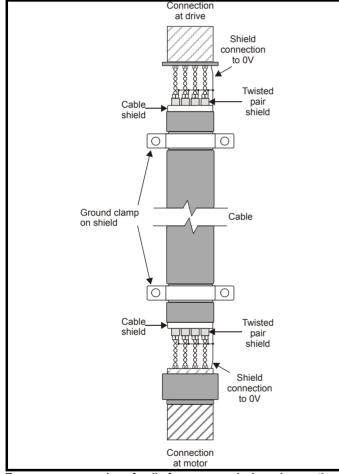
NOTE

The recommendations of the encoder manufacturer must also be adhered to for the encoder connections.

NOTE


In order to guarantee maximum noise immunity for any application double shielded cable as shown should be used.

In some cases single shielding of each pair of differential signals cables, or a single overall shield with individual shield on the thermistor connections is sufficient. In these cases all the shields should be connected to ground and 0V at both ends.


						-							
Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	lechnical	Discussion	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation		parameters	Data	Diagnostics	Information
mormation	information	Installation	Installation	Starteu	parameters	the motor		operation	PLC	parameters	Data		Information

If the 0V is required to be left floating a cable with individual shields and an overall shield must be used. Figure 4-15 and Figure illustrate the preferred construction of cable and the method of clamping. The outer sheath of the cable should be stripped back enough to allow the clamp to be installed. The shield must not be broken or opened at this point. The clamps should be installed close to the drive or feedback device, with the ground connections made to a ground plate or similar metallic ground surface.

Figure 4-15 Feedback cable, twisted pair

Figure 4-16 Feedback cable connections

To ensure suppression of radio frequency emission, observe the following:

- Use a cable with an overall shield.
- Clamp the overall shield to grounded metallic surfaces at both the encoder and the drive, as illustrated in Figure 4-16 above.

4.9.3 Compliance with EN 61800-3 (standard for Power Drive Systems)

Meeting the requirements of this standard depends on the environment that the drive is intended to operate in, as follows:

Operation in the first environment

An external EMC filter will always be required.

This is a product of the restricted distribution class according to IEC 61800-3.

In a residential environment this product may cause radio interference in which case the user may be required to take adequate counter measures.

Operation in the second environment

In all cases a shielded motor cable must be used. Where a filter is required, follow the guidelines given in section 12.1.23 *Electromagnetic compatibility (EMC)* on page 240.

The second environment typically includes an industrial low voltage power supply network which does not supply buildings used for residential purposes. Operating the drive in this environment without an external EMC filter may cause interference to nearby electronic equipment whose sensitivity has not been considered. The user must take remedial measures if this situation arises. If the consequences of unexpected disturbance are severe, it is recommended that the guidelines in section 4.9.4 *Variations in the EMC wiring Interruptions to the motor cable* be adhered to.

Refer to section 4.9 *EMC (Electromagnetic compatibility)* on page 59 for further information on compliance with EMC standards and definitions of environments.

4.9.4 Variations in the EMC wiring Interruptions to the motor cable

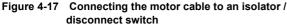
The motor cable should ideally be a single length of shielded or armored cable having no interruptions. In some situations it may be necessary to interrupt the cable, as in the following examples:

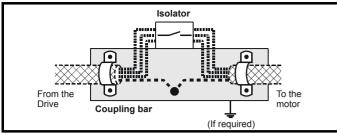
- Connecting the motor cable to a terminal block in the drive enclosure.
- Installing a motor isolator / disconnect switch for safety when work is done on the motor.

In these cases the following guidelines should be followed.

Terminal block in the enclosure

The motor cable shields should be bonded to the back-plate using uninsulated metal cable-clamps which should be positioned as close as possible to the terminal block. Keep the length of power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away from the terminal block.


Using a motor isolator / disconnect-switch


The motor cable shields should be connected by a very short conductor having a low inductance. The use of a flat metal coupling-bar is recommended; conventional wire is not suitable.

The shields should be bonded directly to the coupling-bar using uninsulated metal cable-clamps. Keep the length of the exposed power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away.

The coupling-bar may be grounded to a known low-impedance ground nearby, for example a large metallic structure which is connected closely to the drive ground.

		Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

Surge immunity of control circuits - long cables and connections outside a building

The input/output ports for the control circuits are designed for general use within machines and small systems without any special precautions.

These circuits meet the requirements of EN61000-6-2 (1kV surge) provided the 0V connection is not grounded. In applications where they may be exposed to high-energy voltage surges, some special measures may be required to prevent malfunction or damage. Surges may be caused by lightning or severe power faults in association with grounding arrangements which permit high transient voltages between nominally grounded points. This is a particular risk where the circuits extend outside the protection of a building.

As a general rule, if the circuits are to pass outside the building where the drive is located, or if cable runs within a building exceed 30m (98.5 ft), some additional precautions are advisable. One of the following techniques should be used:

- Galvanic isolation, i.e. do not connect the control 0V terminal to ground. Avoid loops in the control wiring, i.e. ensure every control wire is accompanied by its return (0V) wire.
- 2. Shielded cable with additional power ground bonding. The cable shield may be connected to ground at both ends, but in addition the ground conductors at both ends of the cable must be bonded together by a power ground cable (equipotential bonding cable) with cross-sectional area of at least 10mm2, or 10 times the area of the signal cable shield, or to suit the electrical safety requirements of the plant. This ensures that fault or surge current passes mainly through the ground cable and not in the signal cable shield. If the building or plant has a well-designed common bonded network this precaution is not necessary.
- Additional over-voltage suppression for the analog and digital inputs and outputs, a Zener diode network or a commercially available surge suppressor may be connected in parallel with the input circuit as shown in Figure 4-18 and Figure 4-19. If a digital port experiences a severe surge its protective trip may operate.

(O.Ld1 trip code 26). For continued operation after such an event, the trip can be reset automatically by setting Pr **10.34** to a value of 5.

Figure 4-18 Surge suppression for digital and unipolar inputs and outputs

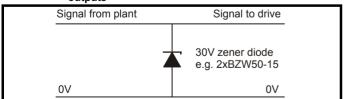
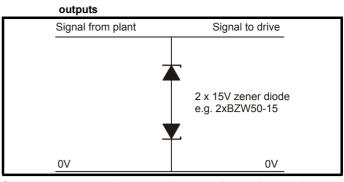



Figure 4-19 Surge suppression for analog and bipolar inputs and

Surge suppression devices are available as rail-mounting modules, e.g. from Phoenix Contact:

Unipolar TT-UKK5-D/24 DC

Bipolar TT-UKK5-D/24 AC

These devices are not suitable for encoder signals or fast digital data networks because the capacitance of the diodes adversely affects the signal. Most encoders have galvanic isolation of the signal circuit from the motor frame, in which case no precautions are required. For data networks, follow the specific recommendations for the particular network.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Safety Information	Product information		Electrical Installation		Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information

4.10 Serial communications connections

The Unidrive SP has a serial communications port (serial port) as standard supporting 2 wire EIA485 communications. Please see Table 4-10 for the connection details for the RJ45 connector.

Figure 4-20 Location of the RJ45 serial comms connector

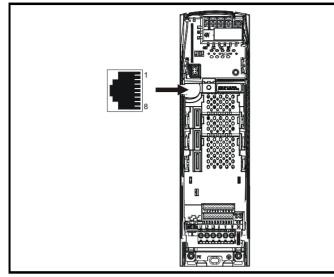


Table 4-10 Connection details for RJ45 connector

Pin	Function
1	120Ω Termination resistor
2	RX TX
3	Isolated 0V
4	+24V (100mA)
5	Isolated 0V
6	TX enable
7	RX\ TX\
8	RX\ TX\ (if termination resistors are required, link to pin 1)
Shell	Isolated 0V

The communications port applies a 2 unit load to the communications network

Minimum number of connections are 2, 3, 7 and shield. Shielded cable must be used at all times.

Isolation of the serial communications port 4.10.1

The serial communications port of the Unidrive SP is double insulated and meets the requirements for SELV in EN50178.

In order to meet the requirements for SELV in IEC60950 (IT equipment) it is necessary for the control computer to be grounded. Alternatively, when a lap-top or similar device is used which has no provision for grounding, an isolation WARNING device must be incorporated in the communications lead.

An isolated serial communications lead has been designed to connect the Unidrive SP to IT equipment (such as lap-top computers), and is available from the supplier of the drive. See below for details:

Table 4-11 Isolated serial comms lead details

Part number	Description
4500-0087	CT EIA232 Comms cable
4500-0096	CT USB Comms cable

The "isolated serial communications" lead has reinforced insulation as defined in IEC60950 for altitudes up to 3,000m.

NOTE

When using the CT EIA232 Comms cable the available baud rate is limited to 19.2k baud.

4.10.2 Multi-drop network

The Unidrive SP can be used on a 2 wire EIA485 multi-drop network using the drive's serial communications port when the following quidelines are adhered to.

Connections

The network should be a daisy chain arrangement and not a A, although short stubs to the drive are allowed.

The minimum connections are pins 2 (RX TX), 3 (isolated 0V), 7 (RX\ TX\) and the shield.

Pin 4 (+24V) on each drive can be connected together but there is no power sharing mechanism between drives and therefore the maximum power available is the same as a single drive. (If pin 4 is not linked to the other drives on the network and has an individual load then the maximum power can be taken from pin 4 of each drive.)

Termination resistors

If a drive is on the end of the network chain then pins 1 and 8 should be linked together. This will connect an internal 120Ω termination resistor between RXTX and RX\TX\. (If the end unit is not a drive or the user wishes to use their own termination resistor, a 120Ω termination resistor should be connected between RXTX and RX\TX\ at the end unit.)

If the host is connected to a single drive then termination resistors should not be used unless the baud rate is high.

CT Comms Cable

The CT Comms Cable can be used on a multi-drop network but should only be used occasionally for diagnostic and set up purposes. The network must also be made up entirely of Unidrive SPs.

If the CT Comms Cable is to be used, then pin 6 (TX enable) should be connected on all drives and pin 4 (+24V) should be linked to at least 1 drive to supply power to the converter in the cable.

Only one CT Comms Cable can be used on a network.

4.11 Control connections

4.11.1 General

Table 4-12 The Unidrive SP control connections consist of:

Function	Qty	Control parameters available	Terminal number
Differential analog input	1	Destination, offset, offset trim, invert, scaling	5,6
Single ended analog input	2	Mode, offset, scaling, invert, destination	7,8
Analog output	2	Source, mode, scaling,	9,10
Digital input	3	Destination, invert, logic select	27,28,29
Digital input / output	3	Input / output mode select, destination / source, invert, logic select	24,25,26
Relay	1	Source, invert	41,42
Drive enable (Secure Disable)	1		31
+10V User output	1		4
+24V User output	1	Source, invert	22
0V common	6		1, 3, 11, 21, 23, 30
+24V External input	1		2

Key:

Destination	indicates the parameter which is being controlled by the
parameter:	terminal / function

Source parameter:	indicates the parameter being output by the terminal
Mode	analog - indicates the mode of operation of the termina

ates the mode of operation of the terminal, parameter: i.e. voltage 0-10V, current 4-20mA etc.

> digital - indicates the mode of operation of the terminal, i.e. positive / negative logic (the Drive Enable terminal is fixed in positive logic), open collector.

All analog terminal functions can be programmed in menu 7.

		Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

All digital terminal functions (including the relay) can be programmed in menu 8.

The setting of Pr **1.14** and Pr **6.04** can cause the function of digital inputs T25 to T29 to change. For more information, please refer to section 11.21.1 *Reference modes* on page 224 and section 11.21.7 *Start / stop logic modes* on page 230.

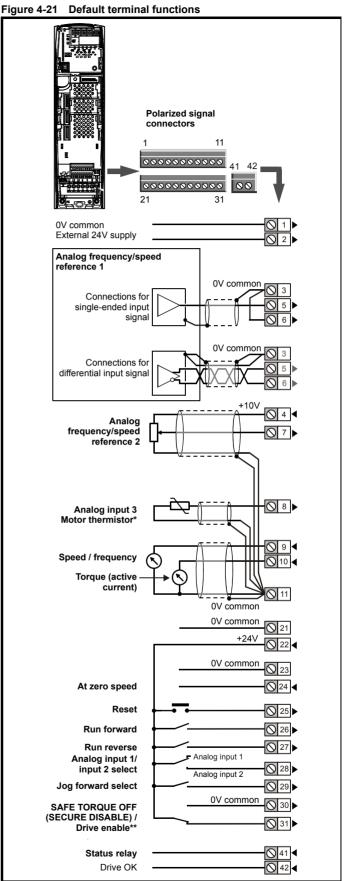
The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to a personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

If any of the digital inputs or outputs (including the drive enable input) are connected in parallel with an inductive load (i.e. contactor or motor brake) then suitable suppression (i.e. diode or varistor) should be used on the coil of the load. If no suppression is used then over voltage spikes can cause damage to the digital inputs and outputs on the drive.

Ensure the logic sense is correct for the control circuit to be used. Incorrect logic sense could cause the motor to be started unexpectedly. Positive logic is the default state for Unidrive SP.

NOTE


Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the point of exit of the motor cable, to avoid this noise current spreading through the control system.

NOTE

The Secure Disable / drive enable terminal is a positive logic input only. It is not affected by the setting of Pr **8.29** *Positive logic select.*

NOTE

The common 0V from analog signals should, wherever possible, not be connected to the same 0V terminal as the common 0V from digital signals. Terminals 3 and 11 should be used for connecting the 0V common of analog signals and terminals 21, 23 and 30 for digital signals. This is to prevent small voltage drops in the terminal connections causing inaccuracies in the analog signals.

* With software V01.07.00 and later, Analog input 3 is configured as a motor thermistor input. With software V01.06.02 and earlier, Analog input 3 has no default function. Refer to *Analog input 3* on page 65.
 **The Secure Disable / Drive enable terminal is a positive logic input only.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

4.11.2 Control terminal specification

0V common

Function	Common connection for all external devices

2 +24V external input									
Function	To supply the control circuit without providing a supply to the power stage								
Nominal voltage	+24.0Vdc								
Minimum continuous operating voltage	+19.2Vdc								
Maximum continuous operating voltage	+30.0Vdc								
Minimum start-up voltage	21.6Vdc								
Recommended power supply	60W 24Vdc nominal								
Recommended fuse	3A, 50Vdc								

3	0V common	
Functi	on	Common connection for all external devices

4	+10V user output					
Functi	on	Supply for external analog devices				
Voltage	tolerance	±1%				
Nomina	l output current	10mA				
Protectio	on	Current limit and trip @ 30mA				

Precision reference	Precision reference Analog input 1						
5 Non-inverting input	Non-inverting input						
6 Inverting input							
Default function	Frequency/speed reference						
Type of input	Bipolar differential analog (For single-ended use, connect terminal 6 to terminal 3)						
Full scale voltage range	±9.8V ±1%						
Absolute maximum voltage range	±36V relative to 0V						
Working common mode voltage range	±13V relative to 0V						
Input resistance	100k Ω ±1%						
Resolution	16-bit plus sign (as speed reference)						
Monotonic	Yes (including 0V)						
Dead band	None (including 0V)						
Jumps	None (including 0V)						
Maximum offset	700μV						
Maximum non linearity	0.3% of input						
Maximum gain asymmetry	0.5%						
Input filter bandwidth single pole	~1kHz						
Sampling period	250μs with destinations as Pr 1.36 , Pr 1.37 or Pr 3.22 in closed loop vector or servo mode. 4ms for open loop mode and all other destinations in closed loop vector or servo mode.						

7 Analog input 2					
Default function	Frequency/speed reference				
Type of input	Bipolar single-ended analog voltage or unipolar current				
Mode controlled by	Pr 7.11				
Operating in Voltage mode					
Full scale voltage range	±9.8V ±3%				
Maximum offset	±30mV				
Absolute maximum voltage range	±36V relative to 0V				
Input resistance	>100kΩ				
Operating in current mode					
Current ranges	0 to 20mA ±5%, 20 to 0mA ±5%, 4 to 20mA ±5%, 20 to 4mA ±5%				
Maximum offset	250μΑ				
Absolute maximum voltage (reverse bias)	-36V max				
Absolute maximum current	+70mA				
Equivalent input resistance	≤200Ω at 20mA				
Common to all modes					
Resolution	10 bit + sign				
Sample period	250µs when configured as voltage input with destinations as Pr 1.36 , Pr 1.37 , Pr 3.22 or Pr 4.08 in closed loop vector or servo mode. 4ms for open loop mode, all other destinations in closed loop vector or servo mode, or any destination when configured as a current input.				

8 Analog input 3					
Default function	V01.07.00 and later: Motor thermistor input (PTC) V01.06.02 and earlier: Not configured				
Type of input	Bipolar single-ended analog voltage, unipolar current or motor thermistor input				
Mode controlled by	Pr 7.15				
Operating in Voltage mode (defau					
Voltage range	±9.8V ±3%				
Maximum offset	±30mV				
Absolute maximum voltage range	±36V relative to 0V				
Input resistance	>100kΩ				
Operating in current mode					
Current ranges	0 to 20mA ±5%, 20 to 0mA ±5%, 4 to 20mA ±5%, 20 to 4mA ±5%				
Maximum offset	250μΑ				
Absolute maximum voltage (reverse bias)	-36V max				
Absolute maximum current	+70mA				
Equivalent input resistance	≤200Ω at 20mA				
Operating in thermistor input mod	de				
Internal pull-up voltage	<5V				
Trip threshold resistance	$3.3k\Omega \pm 10\%$				
Reset resistance	1.8kΩ ±10%				
Short-circuit detection resistance	50Ω ±40%				
Common to all modes	Common to all modes				
Resolution	10 bit + sign				
Sample period	250μs when configured as voltage input with destinations as Pr 1.36 , Pr 1.37 , Pr 3.22 or Pr 4.08 in closed loop vector or servo mode. 4ms for open loop mode, all other destinations in closed loop vector or servo mode, or any destination when configured as a current input.				

T8 analog input 3 has a parallel connection to terminal 15 of the drive encoder connector.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

9	Analog output 1			
10	Analog output 2			
Termina	I 9 default function	OL> Motor FREQUENCY output signal CL> SPEED output signal		
Termina	I 10 default function	Motor active current		
Type of	output	Bipolar single-ended analog voltage or unipolar single ended current		
Mode co	ontrolled by	Pr 7.21 and Pr 7.24		
Operati	ng in Voltage mode (defa	ult)		
Voltage	range	±10V ±3%		
Maximu	m offset	±200mV		
Maximum output current		±35mA		
Load resistance		1kΩ min		
Protection		35mA max. Short circuit protection		
Operating in current mode				
Current ranges		0 to 20mA ±10% 4 to 20mA ±10%		
Maximum offset		600μΑ		
Maximu	m open circuit voltage	+15V		
Maximum load resistance		600Ω		
Commo	n to all modes			
Resolution		10-bit (plus sign in voltage mode)		
Update	period	250µs when configured as a high speed output with sources as Pr 4.02 , Pr 4.17 in all modes or Pr 3.02 , Pr 5.03 in closed loop vector or servo mode. 4ms when configured as any other type of output or with all other sources.		

11	0V common	
Functi	on	Common connection for all external devices

21	0V common	
Functi	on	Common connection for all external devices

+24V user output (sel	+24V user output (selectable)		
Terminal 22 default function	+24V user output		
Programmability	Can be switched on or off to act as a fourth digital output (positive logic only) by setting the source Pr 8.28 and source invert Pr 8.18		
Nominal output current	200mA (including all digital I/O)		
Maximum output current	240mA (including all digital I/O)		
Protection	Current limit and trip		

23 0V common Function Common connection for all external devices

24	Digital I/O 1				
25	Digital I/O 2				
26	Digital I/O 3				
Termina	al 24 default function	AT ZERO SPEED output			
Termina	al 25 default function	DRIVE RESET input			
Termina	al 26 default function	RUN FORWARD input			
Туре		Positive or negative logic digital inputs, positive or negative logic push-pull outputs or open collector outputs			
Input / output mode controlled by		Pr 8.31, Pr 8.32 and Pr 8.33			
Operati	Operating as an input				
Logic mode controlled by		Pr 8.29			
Absolute range	e maximum applied voltage	±30V			
Impedance		6kΩ			
Load		<2mA @ 15Vdc			
Input thresholds		10.0V ±0.8V			
Operati	ng as an output				
Open co	ollector outputs selected	Pr 8.30			
Nominal	I maximum output current	200mA (total including terminal 22)			
Maximum output current		240mA (total including terminal 22)			
Commo	Common to all modes				
Voltage	range	0V to +24V			
Sample / Update period		250μs when configured as an input with destinations as Pr 6.35 or Pr 6.36 . 4ms in all other cases.			

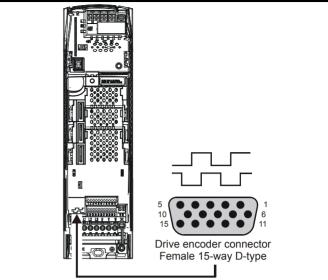
27	Digital Input 4		
28	Digital Input 5		
29	Digital Input 6		
Termina	I 27 default function	RUN REVERSE input	
Termina	I 28 default function	ANALOG INPUT 1 / INPUT 2 select	
Termina	I 29 default function	JOG SELECT input	
Туре		Negative or positive logic digital inputs	
Logic mode controlled by		Pr 8.29	
Voltage	range	0V to +24V	
Absolute range	e maximum applied voltage	±30V	
Load		<2mA @ 15V	
Input thresholds		10.0V ±0.8V	
Sample / Update period		$250 \mu s$ with destinations as Pr 6.35 or Pr 6.36 . 4ms in all other cases.	

30	0V common	
Function	on	Common connection for all external devices

Safety Product Mechanical Electrical Getting Basic Running Optimiz Information information Installation Installation Started parameters the motor Optimiz	tion SMARTCARD Onboard PLC Parameters Data Diagnostics UL Listing Information
---	---

31 Drive enable (SECURE	Drive enable (SECURE DISABLE function)		
Type Positive logic only digital input			
Voltage range	0V to +24V		
Absolute maximum applied voltage	±30V		
Thresholds	15.5V ±2.5V		
Response time	Nominal: 8ms Maximum: 20ms		
The drive enable terminal (T31) provides a SECURE DISABLE function. The SECURE DISABLE function meets the requirements of EN954-1 category 3 for the prevention of unexpected starting of the drive. It may be used in a safety-related application in preventing the drive from generating torque in the motor to a high level of integrity.			

Refer to section 4.13 SAFE TORQUE OFF (SECURE DISABLE) on page 69 for further information.


41 Relay contacts	
Default function	Drive OK indicator
Contact voltage rating	240Vac, Installation over-voltage category II
Contact maximum current rating	2A AC 240V 4A DC 30V resistive load 0.5A DC 30V inductive load (L/R = 40ms)
Contact minimum recommended rating	12V 100mA
Contact type	Normally open
Default contact condition	Closed when power applied and drive OK
Update period	4ms

A fuse or other over-current protection should be installed to the relay circuit.

4.12 Encoder connections

Figure 4-22 Location of encoder connection

Table 4-13 Encoder types

Setting of	Description							
Pr 3.38								
Ab (0)	Quadrature incremental encoder with or without marker pulse							
Fd (1)	Incremental encoder with frequency pulses and direction, with or without marker pulse							
Fr (2)	Incremental encoder with forward pulses and reverse pulses, with or without marker pulse							
Ab.SErVO (3)	Quadrature incremental encoder with UVW commutation signals, with or without marker pulse Encoder with UVW commutation signals only (Pr 3.34 set to zero)*							
Fd.SErVO (4)	Incremental encoder with frequency pulses and direction with commutation signals**, with or without marker pulse							
Fr.SErVO (5)	Incremental encoder with forward pulses and reverse pulses with commutation signals**, with or without marker pulse							
SC (6)	SinCos encoder without serial communications							
SC.HiPEr (7)	Absolute SinCos encoder with HiperFace serial communications protocol (Stegmann)							
EndAt (8)	Absolute EndAt serial communications encoder (Heidenhain)							
SC.EndAt (9)	Absolute SinCos encoder with EnDat serial communications protocol (Heidenhain)							
SSI (10)	Absolute SSI only encoder							
SC.SSI (11)	Absolute SinCos encoder with SSI							

* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance

** The U, V & W commutation signals are required with an incremental type encoder when used with a servo motor. The UVW commutation signals are used to define the motor position during the first 120° electrical rotation after the drive is powered-up or the encoder is initialized.

Safety	Product	Mechanical	Electrical	Getting	Basic	Runnina	• • • •	SMARTCARD	Onboard	Advanced	Technical		UL Listina
							Optimization		DI O			Diagnostics	
Information	information	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data		Information
					•								

Table 4-14 Drive encoder connector details

	Setting of Pr 3.38												
Terminal	Ab (0)	Fd (1)	Fr (2)	Ab.SErVO (3)	Fd.SErVO (4)	Fr.SErVO (5)	SC (6)	SC.HiPEr (7)	EndAt (8)	SC.EndAt (9)	SSI (10)	SC.SSI (11)	
1	А	F	F	A	F	F	Cos			Cos		Cos	
2	A\	F\	F\	A\	F\	F\	Cosref			Cosref		Cosref	
3	В	D	R	В	D	R		Sin		Sin		Sin	
4	B\	D\	R\	B\	D\	R\	5	Sinref		Sinref		Sinref	
5				Z*				E	ncoder inp	ut - Data (inpu	ut/output)		
6				Z*				E	ncoder inp	ut - Data\ (inp	ut/output))	
7	Simulated encoder U								d encoder				
		out, Fout*			_				Fout**				
8	Simulated encoder Aout Fout**			U\						d encoder Fout**			
9	Sim	ulated enc Bout, Dout*	oder	V			Simulated encoder Bout, Dout**						
10		ulated enc out Dout\			V		Simulated encoder Bout Dout**						
11					W				End	coder input - C	Clock (out	put)	
12					W\			Enc	oder input - C	lock\ (ou	tput)		
13	+V												
14						0V com	mon						
15						th***	**						

* Marker pulse is optional

** Simulated encoder output only available in open-loop

- *** The encoder supply is selectable through parameter configuration to 5Vdc, 8Vdc and 15Vdc
- **** Terminal 15 is a parallel connection to T8 analog input 3. If this is to be used as a thermistor input, ensure that Pr 7.15 is set to 'th.sc' (7), 'th' (8) or 'th.diSP' (9).

NOTE

SSI encoders typically have maximum baud rate of 500kBaud. When a SSI only encoder is used for speed feedback with a closed loop vector or servo motor, a large speed feedback filter (Pr **3.42**) is required due to the time taken for the position information to be transferred from the encoder into the drive. The addition of this filter means that SSI only encoders are not suitable for speed feedback in dynamic or high-speed applications.

4.12.1 Specifications

Feedback device connections

Ab, Fd, Fr, Ab.SErVO, Fd.SErVO and Fr.SErVO encoders

1	Channel A, Frequency or Forward inputs										
2	Channel A Frequency\ or Forward\ inputs										
3	Channel B, Direction or Reverse inputs										
4	4 Channel B Direction\ or Reverse\ inputs										
Туре		EIA 485 differential receivers									
Maxim	um input frequency	V01.06.01 and later: 500kHz V01.06.00 and earlier: 410kHz									
Line lo	ading	<2 unit loads									
Line te	ermination components	120 Ω (switchable)									
Workir	ng common mode range	+12V to -7V									
	ite maximum applied voltage e to 0V	±25V									
Absolu voltage	ite maximum applied differential e	±25V									

5	Marker pulse channel Z								
6	Marker pulse channel Z\								
7	Phase channel U								
8	Phase channel U\								
9	Phase channel V								
10	Phase channel V\								
11	Phase channel W								
12	Phase channel W\								
Туре		EIA 485 differential receivers							
Maxim	ium input frequency	512kHz							
Line lo	ading	32 unit loads (for terminals 5 and 6) 1 unit load (for terminals 7 to 12)							
Line te	ermination components	120Ω (switchable for terminals 5 and 6, always in circuit for terminals 7 to 12)							
Workir	ng common mode range	+12V to -7V							
	ite maximum applied voltage e to 0V	+14V to -9V							
Absolı voltage	ite maximum applied differential e	+14V to -9V							

	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information	
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------	--

SC, SC.HiPEr, EndAt, SC.EndAt, SSI and SC.SSI encoders

1 Channel Cos*	Channel Cos*									
2 Channel Cosref*										
3 Channel Sin*										
4 Channel Sinref*	Channel Sinref*									
Туре	Differential voltage									
Maximum Signal level	1.25V peak to peak (sin with regard to sinref and cos with regard to cosref)									
Maximum input frequency	See Table 4-15									
Maximum applied differential voltage and common mode voltage range	±4V									

For the SinCos encoder to be compatible with Unidrive SP, the output signals from the encoder must be a 1V peak to peak differential voltage (across Sin to Sinref and Cos to Cosref).

The majority of encoders have a DC offset on all signals. Stegmann encoders typically have a 2.5Vdc offset. The Sinref and Cosref are a flat DC level at 2.5Vdc and the Cos and Sin signals have a 1V peak to peak waveform biased at 2.5Vdc.

Encoders are available which have a 1V peak to peak voltage on Sin, Sinref, Cos and Cosref. This results in a 2V peak to peak voltage seen at the drive's encoder terminals. It is not recommended that encoders of this type are used with Unidrive SP, and that the encoder feedback signals should meet the above parameters (1V peak to peak).

Resolution: The sinewave frequency can be up to 500kHz but the resolution is reduced at high frequency. Table 4-15 shows the number of bits of interpolated information at different frequencies and with different voltage levels at the drive encoder port. The total resolution in bits per revolution is the ELPR plus the number of bits of interpolated information. Although it is possible to obtain 11 bits of interpolation information, the nominal design value is 10 bits.

* Not used with EndAt and SSI communications only encoders.

Table 4-15 Feedback resolution based on frequency and voltage level

Volt/Freq	1kHz	5kHz	50kHz	100kHz	200kHz	500kHz
1.2	11	11	10	10	9	8
1.0	11	11	10	9	9	7
0.8	10	10	10	9	8	7
0.6	10	10	9	9	8	7
0.4	9	9	9	8	7	6

5	Data**	
6	Data**	
11	Clock***	
12	Clock***	
Туре		EIA 485 differential transceivers
Maxim	num frequency	2MHz
Line lo	bading	32 unit loads (for terminals 5 and 6) 1 unit load (for terminals 11 and 12)
Worki	ng common mode range	+12V to -7V
	ute maximum applied voltage e to 0V	±14V
Absolu voltag	ute maximum applied differential e	±14V

** Not used with SC encoders.

*** Not used with SC and SC.HiPEr encoders.

Frequency slaving outputs (open loop only)

Ab, Fd, Fr, SC, SC.HiPEr, EndAt, SC.EndAt, SSI and SC.SSI encoders

7	Frequency slaving out channel A									
8	Frequency slaving out channel A\									
9	Frequency slaving out channel B									
10	Frequency slaving out channel B\									
Туре		EIA 485 differential transceivers								
Maxim	num output frequency	512kHz								
	ute maximum applied voltage e to 0V	±14V								
Absolu voltage	ute maximum applied differential e	±14V								

Common to all Encoder types

13 En	coder supply voltage	
Supply vo	Itage	5.15V $\pm 2\%,$ 8V $\pm 5\%$ or 15V $\pm 5\%$
Maximum		300mA for 5V and 8V 200mA for 15V

The voltage on terminal 13 is controlled by Pr 3.36. The default for this parameter is 5V (0) but this can be set to 8V (1) or 15V (2). Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device.

If the 15V encoder supply is selected then the termination resistors must be disabled.

The termination resistors should be disabled if the outputs from the encoder are higher than 5V.

14 0V common

15 Motor thermistor input

This terminal is connected internally to terminal 8 of the signal connector. Connect only one of these terminals to a motor thermistor. Analog input 3 must be in thermistor mode, Pr **7.15** = th.SC (7), th (8) or th.diSP (9).

4.13 SAFE TORQUE OFF (SECURE DISABLE)

The SAFE TORQUE OFF (SECURE DISABLE) function provides a means for preventing the drive from generating torque in the motor, with a very high level of integrity. It is suitable for incorporation into a safety system for a machine. It is also suitable for use as a conventional drive enable input.

The SAFE TORQUE OFF (SECURE DISABLE) function makes use of the special property of an inverter drive with an induction motor, which is that torque cannot be generated without the continuous correct active behavior of the inverter circuit. All credible faults in the inverter power circuit cause a loss of torque generation.

The SAFE TORQUE OFF (SECURE DISABLE) function is fail-safe, so when the SAFE TORQUE OFF (SECURE DISABLE) input is disconnected the drive will not operate the motor, even if a combination of components within the drive has failed. Most component failures are revealed by the drive failing to operate. SAFE TORQUE OFF (SECURE DISABLE) is also independent of the drive firmware.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
intormation	information	motanation	motanation	Otaricu	parameters			operation	I LO	parameters	Data		mormation

This meets the requirements of EN954-1 category 3 for the prevention of operation of the motor.¹ On drives with date code P04 and later the SAFE TORQUE OFF (SECURE DISABLE) input also meets the requirements of EN 81-1 clause 12.7.3 b) as part of a system for preventing unwanted operation of the motor in a lift (elevator).²

¹ Independent approval has been given by BGIA.

² Independent approval of concept has been given by TÜV. Please consult the separate guide for lift applications for further information.

SAFE TORQUE OFF (SECURE DISABLE) can be used to eliminate electro-mechanical contactors, including special safety contactors, which would otherwise be required for safety applications.

Note on response time of SAFE TORQUE OFF (SECURE DISABLE), and use with safety controllers with self-testing outputs (drives with date code P04 and later).

SAFE TORQUE OFF (SECURE DISABLE) has been designed to have a response time of greater than 1ms, so that it is compatible with safety controllers whose outputs are subject to a dynamic test with a pulse width not exceeding 1ms.

For applications where a fast-acting disable function is required, please see section 11.21.10 *Fast Disable* on page 232.

Note on the use of servo motors, other permanent-magnet motors, reluctance motors and salient-pole induction motors

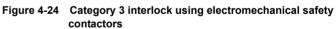
When the drive is disabled through SAFE TORQUE OFF (SECURE DISABLE), a possible (although highly unlikely) failure mode is for two power devices in the inverter circuit to conduct incorrectly.

This fault cannot produce a steady rotating torque in any AC motor. It produces no torque in a conventional induction motor with a cage rotor. If the rotor has permanent magnets and/or saliency, then a transient alignment torque may occur. The motor may briefly try to rotate by up to 180° electrical, for a permanent magnet motor, or 90° electrical, for a salient pole induction motor or reluctance motor. This possible failure mode must be allowed for in the machine design.

The design of safety-related control systems must only be done by personnel with the required training and experience. The SAFE TORQUE OFF (SECURE DISABLE) function will only ensure the safety of a machine if it is correctly incorporated into a complete safety system. The system must be subject to a risk assessment to confirm that the residual risk of an unsafe event is at an acceptable level for the application.

To maintain category 3 according to EN954-1 the environment limits given in section 12.1 *Drive technical data* on page 233 must be adhered to.

SAFE TORQUE OFF (SECURE DISABLE) inhibits the operation of the drive, this includes inhibiting braking. If the drive is required to provide both braking and SAFE TORQUE OFF (SECURE DISABLE) in the same operation (e.g. for emergency stop) then a safety timer relay or similar device must be used to ensure that the drive is disabled a suitable time after braking. The braking function in the drive is provided by an electronic circuit which is not fail-safe. If braking is a safety requirement, it must be supplemented by an independent fail-safe braking mechanism.


SAFE TORQUE OFF (SECURE DISABLE) does not provide electrical isolation. The supply to the drive must be disconnected by an approved isolation device before gaining access to power connections. The following diagrams illustrate how the SAFE TORQUE OFF (SECURE DISABLE) input can be used to eliminate contactors and safety contactors from control systems. Please note these are provided for illustration only, every specific arrangement must be verified for suitability in the proposed application.

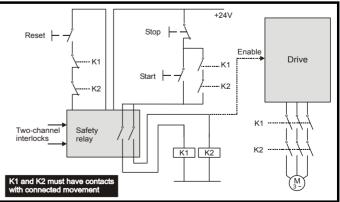
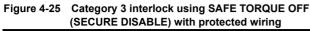
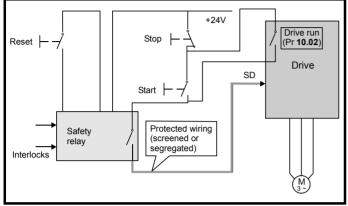

In the first example, illustrated in Figure 4-23, the SAFE TORQUE OFF (SECURE DISABLE) function is used to replace a simple power contactor in applications where the risk of injury from unexpected starting is small, but it is not acceptable to rely on the complex hardware and firmware/software used by the stop/start function within the drive.

Figure 4-23	Start / stop control EN954-1 category B - replacement
	of contactor


In the second example, illustrated in Figure 4-24 and Figure 4-25, a conventional high-integrity system which uses two safety contactors with auxiliary contacts with connected movement is replaced by a single SAFE TORQUE OFF (SECURE DISABLE) system. This arrangement meets EN954-1 category 3.

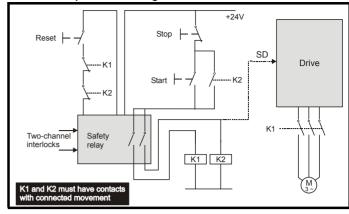


Information information Installation Installation Started parameters the motor operation PLC parameters Data	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

The safety function of the example circuit is to ensure that the motor does not operate when the interlocks are not signalling a safe state. The safety relay is used to check the two interlock channels and detect faults in those channels. The stop/start buttons are shown for completeness as part of a typical arrangement, they do not carry out a safety function and are not necessary for the safe operation of the circuit.

In the conventional system, a contactor failure in the unsafe direction is detected the next time the safety relay is reset. Since the drive is not part of the safety system it has to be assumed that AC power is always available to drive the motor, so two contactors in series are required in order to prevent the first failure from causing an unsafe event (i.e. the motor driven).

With SAFE TORQUE OFF (SECURE DISABLE) there are no single faults in the drive which can permit the motor to be driven. Therefore it is not necessary to have a second channel to interrupt the power connection, nor a fault detection circuit.


It is important to note that a single short-circuit from the Enable input (SAFE TORQUE OFF (SECURE DISABLE)) to a DC supply of approximately +24V would cause the drive to be enabled. For this reason, Figure 4-25 shows the wire from the Enable input to the safety relay as "protected wiring" so that the possibility of a short circuit from this wire to the DC supply can be excluded, as specified in ISO 13849-2. The wiring can be protected by placing it in a segregated cable duct or other enclosure, or by providing it with a grounded shield. The shield is provided to avoid a hazard from an electrical fault. It may be grounded by any convenient method, no special EMC precautions are required.

If the use of protected wiring is not acceptable, so that the possibility of this short circuit must be allowed for, then a relay must be used to monitor the state of the Enable input, together with a single safety contactor to prevent operation of the motor after a fault. This is illustrated in Figure 4-26.

NOTE

The auxiliary relay K2 must be located in the same enclosure and close to the drive, with its coil connected as closely as possible to the drive enable / SAFE TORQUE OFF (SECURE DISABLE) input.

Figure 4-26 Use of contactor and relay to avoid the need for protected wiring

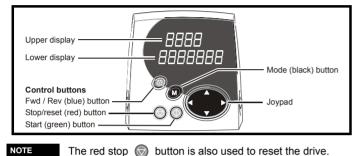
Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5 Getting Started

This chapter introduces the user interfaces, menu structure and security level of the drive.

5.1 Understanding the display

There are two keypads available for the Unidrive SP. The SM-Keypad has an LED display and the SM-Keypad Plus has an LCD display. Both keypads can be installed on the drive but the SM-Keypad Plus can also be remotely mounted on an enclosure door.

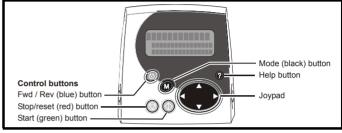

5.1.1 SM-Keypad (LED)

The display consists of two horizontal rows of 7 segment LED displays.

The upper display shows the drive status or the current menu and parameter number being viewed.

The lower display shows the parameter value or the specific trip type.

Figure 5-1 SM-Keypad


5.1.2 SM-Keypad Plus (LCD)

The display consists of three lines of text.

The top line shows the drive status or the current menu and parameter number being viewed on the left, and the parameter value or the specific trip type on the right.

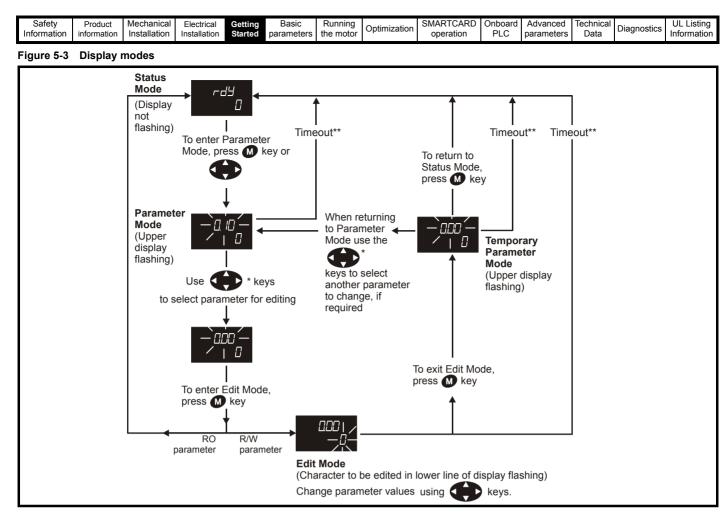
The lower two lines show the parameter name or the help text.

Figure 5-2 SM-Keypad Plus

Both the SM-Keypad and the SM-Keypad Plus can indicate when a SMARTCARD access is taking place or when the second motor map is active (menu 21). These are indicated on the displays as follows.

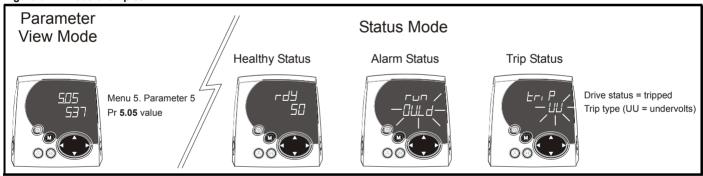
	SM-Keypad	SM-Keypad Plus
SMARTCARD access taking place	The decimal point after the fourth digit in the upper display will flash.	The symbol 'CC' will appear in the lower left hand corner of the display
Second motor map active	The decimal point after the third digit in the upper display will flash.	The symbol 'Mot2' will appear in the lower left hand corner of the display

5.2 Keypad operation


5.2.1 Control buttons

The keypad consists of:

- 1. Joypad used to navigate the parameter structure and change parameter values.
- 2. Mode button used to change between the display modes parameter view, parameter edit, status.
- 3. Three control buttons used to control the drive if keypad mode is selected.
- 4. Help button (SM-Keypad Plus only) displays text briefly describing the selected parameter.


The Help button toggles between other display modes and parameter help mode. The up and down functions on the joypad scroll the help text to allow the whole string to be viewed. The right and left functions on the joypad have no function when help text is being viewed.

The display examples in this section show the SM-Keypad 7 segment LED display. The examples are the same for the SM-Keypad Plus except that the information displayed on the lower row on the SM-Keypad is displayed on the right hand side of the top row on the SM-Keypad Plus.

* can only be used to move between menus if L2 access has been enabled (Pr **0.49**). Refer to section 5.9 on page 77. **Timeout defined by Pr **11.41** (default value = 240s).

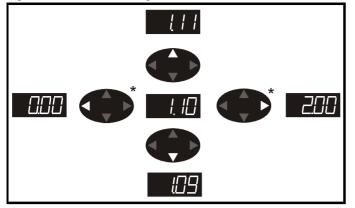
Do not change parameter values without careful consideration; incorrect values may cause damage or a safety hazard.

NOTE

When changing the values of parameters, make a note of the new values in case they need to be entered again.

NOTE

For new parameter-values to apply after the AC supply to the drive is interrupted, new values must be saved. Refer to section 5.7 *Saving parameters* on page 76.

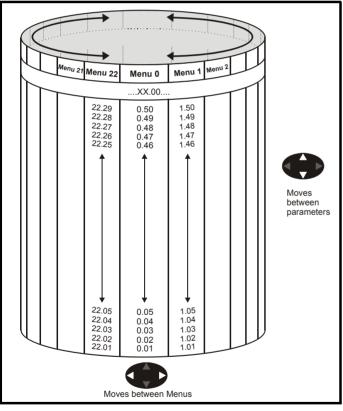

5.3 Menu structure

The drive parameter structure consists of menus and parameters.

The drive initially powers up so that only menu 0 can be viewed. The up and down arrow buttons are used to navigate between parameters and once level 2 access (L2) has been enabled (see Pr **0.49**) the left and right buttons are used to navigate between menus. For further information, refer to section 5.9 *Parameter access level and security* on page 77.

Safety Product Mechanical Electrical Getting Basic Running Optimization Information Installation Installation Installation Started parameters the motor Optimization	N SMARTCARD Onboard Advanced Technical Diagnostics UL Listing Information
--	---

Figure 5-5 Parameter navigation

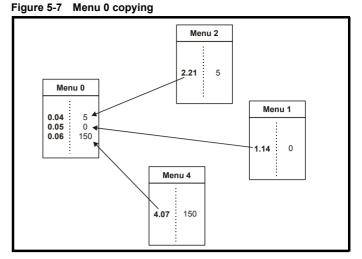

* can only be used to move between menus if L2 access has been enabled (Pr **0.49**). Refer to section 5.9 *Parameter access level and security* on page 77.

The menus and parameters roll over in both directions.

i.e. if the last parameter is displayed, a further press will cause the display to rollover and show the first parameter.

When changing between menus the drive remembers which parameter was last viewed in a particular menu and thus displays that parameter.

Figure 5-6 Menu structure



5.4 Menu 0

Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive.

Appropriate parameters are copied from the advanced menus into menu 0 and thus exist in both locations.

For further information, refer to Chapter 6 Basic parameters on page 80.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5.5 Advanced menus

The advanced menus consist of groups or parameters appropriate to a specific function or feature of the drive. Menus 0 to 22 can be viewed on all keypads. Menus 40 and 41 are specific to the SM-Keypad Plus (LCD). Menus 70 to 91 can be viewed with an SM-Keypad Plus (LCD) only when an SM-Applications is installed.

Table 5-1 Advanced menu descriptions

Menu	Description	LED	LCD
0	Commonly used basic set up parameters for quick / easy programming	~	~
1	Frequency / speed reference	✓	✓
2	Ramps	✓	✓
3	Slave frequency, speed feedback and speed control	~	~
4	Torque and current control	~	~
5	Motor control	~	~
6	Sequencer and clock	✓	✓
7	Analog I/O	✓	✓
8	Digital I/O	✓	✓
9	Programmable logic, motorized pot and binary sum	~	~
10	Status and trips	✓	~
11	General drive set-up	✓	✓
12	Threshold detectors and variable selectors	✓	✓
13	Position control	✓	✓
14	User PID controller	✓	~
15, 16, 17	Solutions Module set-up	~	~
18	Application menu 1	~	~
19	Application menu 2	~	~
20	Application menu 3	~	~
21	Second motor parameters	✓	~
22	Additional Menu 0 set-up	✓	✓
40	Keypad configuration menu	Х	✓
41	User filter menu	Х	~
70	PLC registers	Х	~
71	PLC registers	Х	✓
72	PLC registers	Х	~
73	PLC registers	Х	✓
74	PLC registers	Х	✓
75	PLC registers	Х	~
85	Timer function parameters	Х	~
86	Digital I/O parameters	Х	~
88	Status parameters	Х	~
90	General parameters	Х	~
91	Fast access parameters	Х	~

5.5.1 SM-Keypad Plus set-up menus Table 5-2 Menu 40 parameter descriptions

	Parameter	Range(\$)						
40.00	Parameter 0	0 to 32767						
40.01	Language selection	English (0), Custom (1), French (2), German (3), Spanish (4), Italian (5)						
40.02	Software version	999999						
40.03	Save to flash	Idle (0), Save (1), Restore (2), Default (3)						
40.04	LCD contrast	0 to 31						
40.05	Drive and attribute database upload was bypassed	Updated (0), Bypass (1)						
40.06	Browsing favourites control	Normal (0), Filter (1)						
40.07	Keypad security code	0 to 999						
40.08	Communication channel selection	Disable (0), Slot1 (1), Slot2 (2), Slot3 (3), Slave (4), Direct (5)						
40.09	Hardware key code	0 to 999						
40.10	Drive node ID (Address)	0 to 255						
40.11	Flash ROM memory size	4Mbit (0), 8Mbit (1)						
40.12	Replacement macro enable	None (0), Replace (1)						
40.13	Replacement macro number	0 to 255						
40.14	Wizard macro enable	None (0), Wizard (1)						
40.15	Wizard macro number	0 to 255						
40.16	Assistance on action macro enable	None (0), Action (1)						
40.17	Assistance on action macro number	0 to 255						
40.19	String database version number	0 to 999999						
40.20	Screen saver strings and enable	None (0), Default (1), User (2)						
40.21	Screen saver interval	0 to 600						
40.22	Turbo browse time interval	0 to 200ms						

Table 5-3 Menu 41 parameter descriptions

	Parameter	Range(≎)
41.00	Parameter 0	0 to 32767
41.01 to 41.50	Browsing filter source F01 to F50	Pr 0.00 to Pr 391.51
41.51	Browsing favourites control	Normal (0), Filter (1)

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

5.5.2 Display messages

The following tables indicate the various possible mnemonics which can be displayed by the drive and their meaning.

Trip types are not listed here but can be found in Chapter 6 Basic parameters on page 80 if required.

Table 5-4 Alarm indications

Lower display	Description						
br.rS	Braking resistor overload						
Braking resistor I ² t accumulator (Pr 10.39) in the drive has reached 75.0% of the value at which the drive will trip and the braking IGBT is active.							
Hot	Heatsink or control board or inverter IGBT over temperature alarms are active						
	eatsink temperature has reached a threshold and the p 'Oh2' if the temperature continues to rise (see the						
or							
	nt temperature around the control PCB is approaching nperature threshold (see the 'O.CtL' trip).						
OVLd	Motor overload						
	ccumulator in the drive has reached 75% of the value at will be tripped and the load on the drive is >100%						
Auto tune	Autotune in progress						
The autotune patternatively on	rocedure has been initialised. 'Auto' and 'tunE' will flash the display.						
Lt	Limit switch is active						
	limit switch is active and that it is causing the motor to forward limit switch with forward reference etc.)						
PLC	Onboard PLC program is running						
	C program is installed and running. The lower display once every 10s.						

Table 5-5 Solutions Module and SMARTCARD status indications on power-up

Lower display	Description
boot	
drive during por	t is being transferred from the SMARTCARD to the wer-up. For further information, please refer to section <i>p</i> from the SMARTCARD on every power up (Pr 11.42 = ge 121.
cArd	
The drive is wri	ting a parameter set to the SMARTCARD during power-

up.

For further information, please refer to section 9.2.3 Auto saving parameter changes (Pr 11.42 = Auto (3)) on page 121.

loAding

The drive is writing information to a Solutions Module.

5.6 Changing the operating mode

Changing the operating mode returns all parameters to their default value, including the motor parameters. (Pr **0.49** *Security status* and Pr **0.34** *User security code* are not affected by this procedure.)

Procedure

Use the following procedure only if a different operating mode is required:

- 1. Ensure the drive is not enabled, i.e. terminal 31 is open or Pr 6.15 is Off (0)
- Enter either of the following values in Pr xx.00, as appropriate: 1253 (EUR, 50Hz AC supply frequency) 1254 (USA, 60Hz AC supply frequency)
- 3. Change the setting of Pr 0.48 as follows:

Pr 0.48 setting		Operating mode
048 026n L2	1	Open-loop
С. UECE	2	Closed-loop vector and RFC mode
048 56-00	3	Closed-loop Servo
048 FESEn	4	Free Standing drives are not intended to be used in regen mode

The figures in the second column apply when serial communications are used.

- 4. Either:
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

NOTE

Entering 1253 or 1254 in Pr **xx.00** will only load defaults if the setting of Pr **0.48** has been changed.

5.7 Saving parameters

When changing a parameter in Menu 0, the new value is saved when pressing the *M* Mode button to return to parameter view mode from parameter edit mode.

If parameters have been changed in the advanced menus, then the change will not be saved automatically. A save function must be carried out.

Procedure

Enter 1000* in Pr. xx.00

Either:

- · Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

*If the drive is in the under voltage trip state or is being supplied from a low voltage DC supply, a value of 1001 must be entered into Pr **xx.00** to perform a save function.

5.8 Restoring parameter defaults

Restoring parameter defaults by this method saves the default values in the drive's memory. (Pr **0.49** and Pr **0.34** are not affected by this procedure.)

Procedure

- 1. Ensure the drive is not enabled, i.e. terminal 31 is open or Pr 6.15 is Off (0)
- 2. Enter 1233 (EUR 50Hz settings) or 1244 (USA 60Hz settings) in Pr xx.00.

Optimization	VARTCARD Onboard Advanced Technical Diagnostics UL Listing Information
--------------	--

- 3. Either:
- Press the red
 reset button
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr **10.38** to 100 (ensure that Pr. **xx.00** returns to 0).

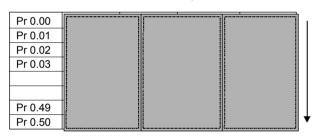
5.9 Parameter access level and security

The parameter access level determines whether the user has access to menu 0 only or to all the advanced menus (menus 1 to 22) in addition to menu 0.

The User Security determines whether the access to the user is read only or read write.

Both the User Security and Parameter Access Level can operate independently of each other as shown in the table below:

Parameter Access Level	User Security	Menu 0 status	Advanced menus status
L1	Open	RW	Not visible
L1	Closed	RO	Not visible
L2	Open	RW	RW
L2	Closed	RO	RO


RW = Read / write access RO = Read only access

The default settings of the drive are Parameter Access Level L1 and user Security Open, i.e. read / write access to Menu 0 with the advanced menus not visible.

5.9.1 Access Level

The access level is set in Pr **0.49** and allows or prevents access to the advanced menu parameters.

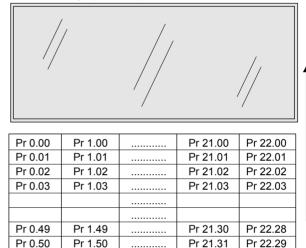
L1 access selected - Menu 0 only visible

L2 access selected - All parameters visible

Pr 0.00	Pr 1.00	 Pr 21.00	Pr 22.00
Pr 0.01	Pr 1.01	 Pr 21.01	Pr 22.01
Pr 0.02	Pr 1.02	 Pr 21.02	Pr 22.02
Pr 0.03	Pr 1.03	 Pr 21.03	Pr 22.03
Pr 0.49	Pr 1.49	 Pr 21.30	Pr 22.28
Pr 0.50	Pr 1.50	 Pr 21.31	Pr 22.29

5.9.2 Changing the Access Level

The Access Level is determined by the setting of Pr 0.49 as follows:


String	Value	Effect
L1	0	Access to menu 0 only
L2	1	Access to all menus (menu 0 to menu 22)

The Access Level can be changed through the keypad even if the User Security has been set.

5.9.3 User Security

The User Security, when set, prevents write access to any of the parameters (other than Pr. **0.49** and Pr **11.44** *Access Level*) in any menu.

User security open - All parameters: Read / Write access

User security closed - All parameters: Read Only access (except Pr 0.49 and Pr 11.44)

		、 i		,
Pr 0.00	Pr 1.00		Pr 21.00	Pr 22.00
Pr 0.01 /	/ Pr 1.01	/.	Pr 21.01	Pr 22.01
Pr 0.02	Pr 1.02	//	Pr 21.02	Pr 22.02
Pr 0.0⁄3/	Pr 1.03		Pr 21.03	Pr 22.03
/		//		
				V/
Pr 0.49	Pr 1.49	/	Pr 21.30	/Pr 22.28
Pr 0.50	Pr 1.50		Pr 21.31	Pr 22.29

Setting User Security

Enter a value between 1 and 999 in Pr **0.34** and press the **W** button; the security code has now been set to this value. In order to activate the security, the Access level must be set to Loc in Pr **0.49**. When the drive is reset, the security code will have been activated and the drive returns to Access Level L1. The value of Pr **0.34** will return to 0 in order to hide the security code. At this point, the only parameter that can be changed by the user is the Access Level Pr **0.49**.

Unlocking User Security

Select a read write parameter to be edited and press the *w* button, the upper display will now show CodE. Use the arrow buttons to set the

security code and press the M button.

With the correct security code entered, the display will revert to the parameter selected in edit mode.

If an incorrect security code is entered the display will revert to parameter view mode.

To lock the User Security again, set Pr **0.49** to Loc and press the loc reset button.

1	Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
	Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data		Information

Disabling User Security

Unlock the previously set security code as detailed above. Set Pr 0.34 to

0 and press the 🚺 button. The User Security has now been disabled, and will not have to be unlocked each time the drive is powered up to allow read / write access to the parameters.

5.10 Displaying parameters with nondefault values only

By entering 12000 in Pr **xx.00**, the only parameters that will be visible to the user will be those containing a non-default value. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr **xx.00** and enter a value of 0.

Please note that this function can be affected by the access level enabled, refer to *section 5.9 Parameter access level and security* for further information regarding access level.

5.11 Displaying destination parameters only

By entering 12001 in Pr **xx.00**, the only parameters that will be visible to the user will be destination parameters. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr **xx.00** and enter a value of 0.

Please note that this function can be affected by the access level enabled, refer to *section 5.9 Parameter access level and security* for further information regarding access level.

5.12 Serial communications

5.12.1 Introduction

The Unidrive SP has a standard 2-wire EIA485 interface (serial communications interface) which enables all drive set-up, operation and monitoring to be carried out with a PC or controller if required. Therefore, it is possible to control the drive entirely by serial communications without the need for a SM-keypad or other control cabling. The drive supports two protocols selected by parameter configuration:

- Modbus RTU
- CT ANSI

Modbus RTU has been set as the default protocol, as it is used with the PC-tools commissioning/start-up software as provided on the CD ROM.

The serial communications port of the drive is a RJ45 socket, which is isolated from the power stage and the other control terminals (see section 4.10 *Serial communications connections* on page 63 for connection and isolation details).

The communications port applies a 2 unit load to the communications network.

USB/EIA232 to EIA485 Communications

An external USB/EIA232 hardware interface such as a PC cannot be used directly with the 2-wire EIA485 interface of the drive. Therefore a suitable converter is required.

Suitable USB to EIA485 and EIA232 to EIA485 isolated converters are available from Control Techniques as follows:

- CT USB Comms cable (CT Part No. 4500-0096)
- CT EIA232 Comms cable (CT Part No. 4500-0087)

When using one of the above converters or any other suitable converter with the Unidrive SP, it is recommended that no terminating resistors be connected on the network. It may be necessary to 'link out' the terminating resistor within the converter depending on which type is used. The information on how to link out the terminating resistor will normally be contained in the user information supplied with the converter.

5.12.2 Serial communications set-up parameters

The following parameters need to be set according to the system requirements.

0.3	5 {1	1.24}	Serial	mode					
R١	N	Txt						US	
Û			AnSI (rtU (1		₽		rtU (1	1)	

This parameter defines the communications protocol used by the 485 comms port on the drive. This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original protocol. The master should wait at least 20ms before send a new message using the new protocol. (Note: ANSI uses 7 data bits, 1 stop bit and even parity; Modbus RTU uses 8 data bits, 2 stops bits and no parity.)

Comms value	String	Communications mode
0	AnSI	ANSI
1	rtU	Modbus RTU protocol
2	Lcd	Modbus RTU protocol, but with an SM- Keypad Plus only

ANSIx3.28 protocol

Full details of the CT ANSI communications protocol are the *Advanced User Guide*.

Modbus RTU protocol

Full details of the CT implementation of Modbus RTU are given in the *Advanced User Guide*.

Modbus RTU protocol, but with an SM-Keypad Plus only

This setting is used for disabling communications access when the SM-Keypad Plus is used as a hardware key. See the *Advanced User Guide* for more details.

				Serial communications baud rate										
ſ	R۷	V	Txt								US			
	Û	24	100 (3), 1920	600 (1 4800 (0 (6), 3 (8)*, 11	4), 960 8400 (7	0 (5), 7),	Û			19200	(6)			

* only applicable to Modbus RTU mode

This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20ms before sending a new message using the new baud rate.

NOTE

When using the CT EIA232 Comms cable the available baud rate is limited to 19.2k baud.

0.3	7 {1	1.23}	Serial	comm	unicati	ions	s ad	dress			
R١	N	Txt								US	
$\hat{\mathbb{Q}}$			0 to 24	47		⇒			1		

Used to define the unique address for the drive for the serial interface. The drive is always a slave.

Safety Product Mechanical Electrical Getting Basic Running Optimization SMARTCAR Information Installation Installation Started parameters the motor Optimization SMARTCAR	Diagnostics
---	-------------

Modbus RTU

When the Modbus RTU protocol is used addresses between 0 and 247 are permitted. Address 0 is used to globally address all slaves, and so this address should not be set in this parameter

ANSI

When the ANSI protocol is used the first digit is the group and the second digit is the address within a group. The maximum permitted group number is 9 and the maximum permitted address within a group is 9. Therefore, Pr **0.37** is limited to 99 in this mode. The value 00 is used to globally address all slaves on the system, and x0 is used to address all slaves of group x, therefore these addresses should not be set in this parameter.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

6 Basic parameters

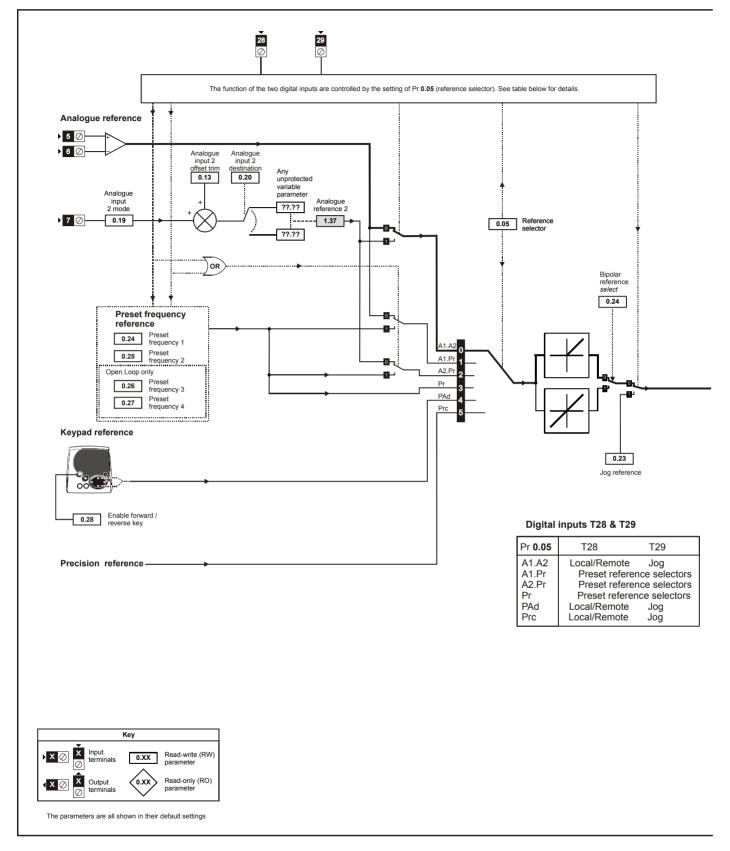
Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive. All the parameters in menu 0 appear in other menus in the drive (denoted by {...}).

Menus 11 and 22 can be used to change most of the parameters in menu 0. Menu 0 can also contain up to 59 parameters by setting up menu 22.

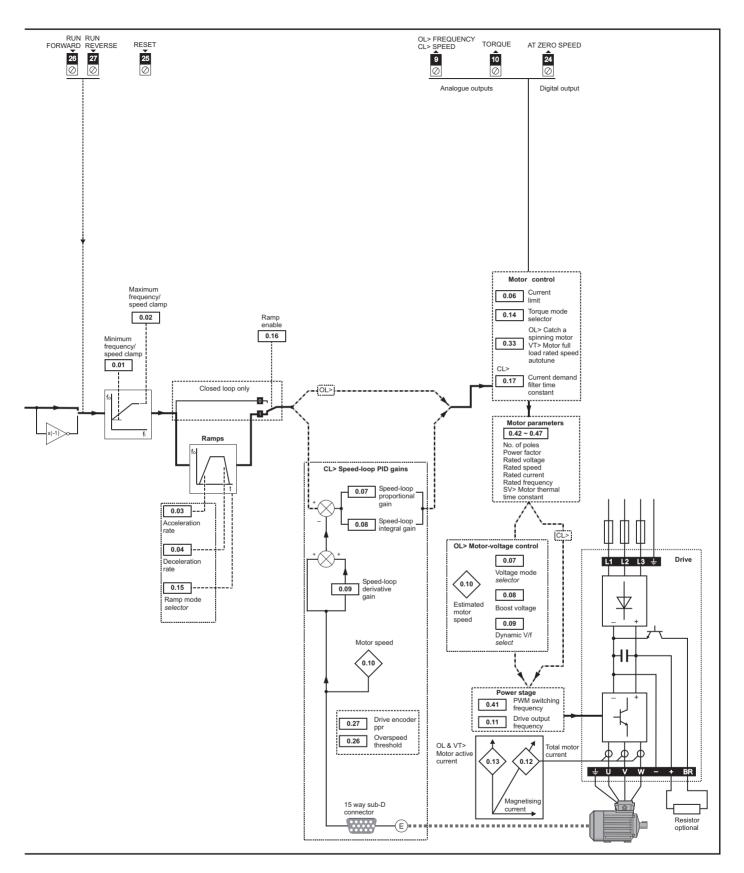
6.1 Single line descriptions

	-			Range(\$)			Default(⇔)		Turne					
	Parameter		OL	VT	SV	OL	VT	SV	Туре					
0.00	xx.00	{ x.00 }		0 to 32,767			0		RW	Uni				
0.01	Minimum reference clamp	{1.07 }	±3,000.0Hz	±SPEED_LIMI	T_MAX Hz/rpm		0.0		RW	Bi			PT	US
0.02	Maximum reference clamp	{1.06 }	0 to 3,000.0Hz	SPEED_LIMI	T_MAX Hz/rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1,800.0	3,000.0	RW	Uni				US
0.03	Acceleration rate	{2.11}	0.0 to 3,200.0 s/100Hz	s/1,0	3,200.000 00rpm	5.0	2.000	0.200	RW	Uni				US
0.04	Deceleration rate	{2.21}	0.0 to 3,200.0 s/100Hz	s/1,0	3,200.000 00rpm	10.0	2.000	0.200	RW	Uni				US
0.05	Reference select	{1.14}		Pr (1), A2.Pr (2) Prc (5)			A1.A2 (0)		RW	Txt		NC		US
0.06	Current limit	{4.07 }	0 to	Current_limit_rr	iax %	138.1	165.7	150.0	RW	Uni		RA		US
0.07	OL> Voltage mode select	{5.14 }	Ur_S (0), Ur (1), Fd (2), Ur_Auto (3), Ur_I (4), SrE (5)			Ur_I (4)			RW	Txt				US
	CL> Speed controller P gain	{3.10}		0.0000 to 6.	5535 1/rad s ⁻¹		0.0300	0.0100	RW	Uni				US
0.08	OL> Voltage boost	{5.15 }	0.0 to 25.0% of motor rated voltage			1.0			RW	Uni				US
	CL> Speed controller I gain	{3.11}		0.00 to 65	55.35 1/rad		0.10	1.00	RW	Uni				US
0.09	OL> Dynamic V/F	{5.13}	OFF (0) or On (1)			0			RW					US
	CL> Speed controller D gain	{ 3.12 }	100.000	0.00000 to	0.65535 (s)		0.000	000	RW				DT	US
0.10	OL> Estimated motor speed CL> Motor speed	{5.04}	±180,000 rpm	L Croad	22.01/ 22.22				RO	Bi		NC		
	CL> Motor speed OL & VT> Drive output frequency	{3.02} {5.01}	±Speed_freq_ max Hz	±Speed_ ±1250 Hz	_max rpm				RO RO	Bi Bi	FI FI	NC NC	PT PT	
0.11	SV> Drive encoder position	{3.29 }	HIGK TIE		0 to 65,535 1/2 ¹⁶ ths of a revolution				RO	Uni	FI	NC	PT	
0.12	Total motor current	{4.01}	0 to	Drive_current_r	nax A				RO	Uni	FI	NC	PT	
0.13	OL & VT> Motor active current	{4.02 }	±Drive_curi	rent_max A					RO	Bi	FI	NC	PT	
	SV> Analog input 1 offset trim	{7.07 }			±10.000 %			0.000	RW	Bi				US
0.14	Torque mode selector	{4.11 }	0 to 1	01	to 4	Spee	d control mode	(0)	RW	Uni				US
0.15	Ramp mode select	{2.04 }	FASt (0) Std (1) Std.hV (2)		St (0) I (1)		Std (1)		RW	Txt				US
0.16	OL> T28 and T29 auto- selection disable	{8.39 }	OFF (0) or On (1)			OFF (0)			RW					US
	CL> Ramp enable	{2.02 }		OFF (0)	or On (1)		On	(1)	RW	Bit				US
0.17	OL> T29 digital input destination	{8.26 }	Pr 0.00 to Pr 21.51			Pr 6.31			RW	Uni	DE		PT	US
	CL> Current demand filter time constant	{ 4.12 }			25.0 ms		0.0	0	RW				DT	US
0.18	Positive logic select	{8.29 }		OFF (0) or On (0-0 (1), 4-20tr (2	,		On (1)			Bit			Ы	US
0.19	Analog input 2 mode	{7.11 }		(4), 20-4 (5), VC			VOLt (6)		RW	Txt				US
0.20	Analog input 2 destination	{7.14 }		Pr 0.00 to Pr 21.	.,		Pr 1.37		RW	Uni	DE		PT	US
0.21	Analog input 3 mode	{7.15 }		0-0 (1), 4-20tr (2 20-4 (5), VOLt (6 th (8), th.diSp (9), th.SC (7),		th (8)		RW	Txt			PT	US
0.22	Bipolar reference select	{1.10}		OFF (0) or On (1)		OFF (0)		RW	Bit				US
0.23	Jog reference	{1.05}	0 to 400.0 Hz 0 to 4000.0 rpm				0.0			Uni				US
0.24	Pre-set reference 1	{1.21}		peed_limit_max	•		0.0		RW		<u> </u>			US
0.25	Pre-set reference 2	{1.22 }		peed_limit_max	rpm		0.0		RW	Bi				US
0.26	OL> Pre-set reference 3	{ 1.23 }	±Speed_freq_ max Hz/rpm	<u> </u>	000	0.0			RW					US
I	CL> Overspeed threshold	{3.08 }	1 Open de la casa	0 to 40,	.000 rpm		0		RW	Uni				US
0.27	OL> Pre-set reference 4	{1.24 }	±Speed_freq_ max Hz/rpm			0.0			RW					US
0.29	CL> Drive encoder lines per revolution	{3.34}			50,000		1024	4096		Uni				US
0.28	Keypad fwd/rev key enable	{6.13 }		OFF (0) or On ('	1)		OFF (0)		KVV	Bit	<u> </u>			US

Safe Informa	.,	Electric Installat			unning e motor	Optimization	SMARTCARD operation		vanced Techr imeters Dat		Diagno	ostics		L Lis orma	ting ation
	Parameter			Range()			Default(⇔)				Тур	oe		
			OL	VT		SV	OL	VT	sv						
0.29	SMARTCARD parameter data	{11.36}		0 to 999			0				Uni		NC	PT	US
0.30	Parameter copying	{11.42}	nonE (0), rEAc					nonE (0)		RW	Txt		NC		*
0.31	Drive rated voltage	{11.33}	200 (0),	400 (1), 575 (2), 690	(3) V				RO	Txt		NC	PT	
0.32	Maximum Heavy Duty current rating	{ 11.32 }		0.00 to 9999.	99A			-		RO	Uni		NC	PT	
0.33	OL> Catch a spinning motor	{6.09 }	0 to 3				0			RW	Uni				US
	VT> Rated rpm autotune	{5.16}		0 to 2				0		RW	Uni				US
0.34	User security code	{11.30}		0 to 999				0		RW	Uni		NC	PT	PS
0.35	Serial comms mode	{11.24}		SI (0), rtu (1),	()	4000 (4)		rtU (1)		RW	Txt				US
0.36	Serial comms baud rate	{11.25}	57600	1), 1200 (2), 2 5), 19200 (6), 0 (8) Modbus 00 (9) Modbus	38400 (RTU onl	(7), ly,		19200 (6)		RW	Txt				US
0.37	Serial comms address	{11.23}		0 to 247				1		RW	Uni				US
0.38	Current loop P gain	{4.13 }		0 to 30,000)		All voltage ratings: 20	200V d 400V dr 575V dr 690V dr	ive: 150 ive: 180	RW	Uni				US
0.39	Current loop I gain	{4.14 }	0 to 30,000				All voltage ratings 40	200V dri 400V dri 575V dri 690V dri	ve: 2000 ve: 2400	RW	Uni				US
0.40	Autotune	{5.12}	0 to 2	0 to 4		0 to 6		0		RW	Uni				
0.41	Maximum switching frequency	{5.18 }	3	(0), 4 (1), 6 (2	?) kHz		3 (0)	6 (2)	RW	Txt		RA		US
0.42	No. of motor poles	{5.11}	0 to	60 (Auto to 1)	20 pole))	0 (A	uto)	6 POLE (3)	RW	Txt				US
0.43	OL & VT> Motor rated power factor	{5.10 }	0.000 t	o 1.000			0.8	50		RW	Uni				US
	SV> Encoder phase angle	{3.25}			0.0	to 359.9°			0.0	RW	Uni				US
0.44	Motor rated voltage	{5.09 }	0 to <i>A</i>	AC_voltage_s	et_max	V	400V drive 5	00V drive: 230 : EUR> 400, U 75V drive: 575 90V drive: 690	SA> 460	RW	Uni		RA		US
0.45	OL & VT> Motor rated full load speed (rpm)	{5.08 }	0 to 180,000 rpm	0.00 to 40,000.00 rpm			EUR> 1,500 USA> 1,800	EUR> 1,450.00 USA> 1,770.00		RW	Uni				US
	SV> Motor thermal time constant	{4.15 }			0.0	to 3000.0			20.0	RW	Uni				US
0.46	Motor rated current	{5.07 }	0 to	Rated_curren	t_max A	A		ated current [1	1.32]	RW	Uni		RA		US
0.47	Rated frequency	{5.06 }	0 to 3,000.0 Hz	0 to 1,250.0 Hz			EUR> USA>			RW	Uni				US
0.48	Operating mode selector	{11.31}	SI	n LP (1), CL \ ErVO (3), rEg	En (4)),	OPEn LP (1)	CL VECt (2)	SErVO (3)	RW	Txt		NC	PT	
0.49	Security status	{11.44}	Ľ	1 (0), L2 (1), L	()					RW	Txt			PT	US
0.50	Software version	{11.29}		1.00 to 99.9	99					RO	Uni		NC	PT	
0.51	Action on trip detection	{10.37}		0 to 15				0		RW	Uni				US


* Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved Key:

Coding	Attribute
OL	Open loop
CL	Closed loop vector and Servo
VT	Closed loop vector
SV	Servo
{X.XX}	Copied advanced parameter
RW	Read/write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter: 'On' or 'OFF' on the display
Bi	Bipolar parameter
Uni	Unipolar parameter
Txt	Text: the parameter uses text strings instead of numbers.
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.


Coding	Attribute
RA	Rating dependent: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. Parameters with this attribute will not be transferred to the destination drive by SMARTCARDs when the rating of the destination drive is different from the source drive and the file is a parameter file. However, with software V01.09.00 and later the value will be transferred if only the current rating is different and the file is a differences from default type file.
NC	Not copied: not transferred to or from SMARTCARDs during copying.
PT	Protected: cannot be used as a destination.
US	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) trip occurs. With software version V01.08.00 and later, power-down save parameters are also saved in the drive when the user initiates a parameter save.

Safety Product Mechanical Electrical Getting Basic Running Optimization Optimization Information information Installation Installation Started parameters Running Optimization Optimization	SMARTCARD Onboard Advanced Technical Diagnostics UL Listing operation PLC parameters Data Diagnostics Information
---	---

Figure 6-1 Menu 0 logic diagram

Safety Information ir	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--------------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

6.2 Full descriptions

6.2.1 Parameter x.00

0.0	0.00 {x.00} Parameter zero											
R١	Ν	Uni										
ţ	0 to 32,767								0			

Pr x.00 is available in all menus and has the following functions.

Value	Action
1000	Save parameters when under voltage is not active (Pr 10.16 = 0) and low voltage DC supply is not active (Pr 6.44 = 0).
1001	Save parameters under all conditions
1070	Reset all option modules
1233	Load standard defaults
1244	Load US defaults
1253	Change drive mode with standard defaults
1254	Change drive mode with US defaults
1255	Change drive mode with standard defaults (excluding menus 15 to 20)
1256	Change drive mode with US defaults (excluding menus 15 to 20)
2001*	Transfer drive parameters as difference from default to a bootable SMARTCARD block in data block number 001
Зууу*	Transfer drive EEPROM data to a SMART Card block number yyy
4ууу*	Transfer drive data as difference from defaults to SMART Card block number yyy
5ууу*	Transfer drive ladder program to SMART Card block number yyy
6yyy*	Transfer SMART Card data block number yyy to the drive
7ууу*	Erase SMART Card data block number yyy
8ууу*	Compare drive parameters with SMART Card data block number yyy
9555*	Clear SMARTCARD warning suppression flag
9666*	Set SMARTCARD warning suppression card
9777*	Clear SMARTCARD read-only flag
9888*	Set SMARTCARD read-only flag
9999*	Erase SMARTCARD data block 1 to 499
110zy	Transfer electronic nameplate parameters to/from drive from/ to encoder. See the <i>Advanced User Guide</i> for more information on this function.
12000**	Display non-default values only
12001**	Display destination parameters only

* See Chapter 9 *SMARTCARD operation* on page 119 for more information of these functions.

** These functions do not require a drive reset to become active. All other functions require a drive reset to initiate the function.

6.2.2 Speed limits

0.01 {1.07} Minimum reference clamp											
R١	Ν	Bi							PT	US	
OL	€	±3,000.0Hz				Ŷ			0.0		
CL	$\hat{\mathbb{V}}$	±SPEED_LIMIT_MAX Hz/rpm				₽			0.0		

(When the drive is jogging, [0.01] has no effect.)

Open-loop

Set Pr 0.01 at the required minimum output frequency of the drive for both directions of rotation. The drive speed reference is scaled between Pr 0.01 and Pr 0.02. [0.01] is a nominal value; slip compensation may cause the actual frequency to be higher.

Closed-loop

Set Pr 0.01 at the required minimum motor speed for both directions of rotation. The drive speed reference is scaled between Pr 0.01 and Pr 0.02.

0.0	0.02 {1.06} Maximum reference clamp											
R١	RW Uni			US								
OL	€	0 to 3,000.0Hz						EUR> 50.0 USA> 60.0				
C∟	Û	SPEEI	D_LIMIT	MAX Hz/rpr		Û	VT		EUR> [·] USA> [·]	'		
							sv		3,00	0.00		

(The drive has additional over-speed protection.)

Open-loop

Set Pr **0.02** at the required maximum output frequency for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**. **[0.02]** is a nominal value; slip compensation may cause the actual frequency to be higher.

Closed-loop

Set Pr **0.02** at the required maximum motor speed for both directions of rotation. The drive speed reference is scaled between Pr **0.01** and Pr **0.02**. For operating at high speeds see section 8.6 *High speed operation* on page 117.

6.2.3 Ramps, speed reference selection, current limit

0.0	0.03 {2.11} Acceleration rate												
R\	N	Uni								US			
OL	ţ	0.0 t	0.0 to 3,200.0 s/100Hz					5.0					
CL	☆	0.000 to 3,200.000					VT		2.0	00			
02	v		0.000 to 3,200.000 s/1,000rpm						0.2	200			

Set Pr 0.03 at the required rate of acceleration.

Note that larger values produce lower acceleration. The rate applies in both directions of rotation.

0.0)4 {	2.21}	Decel	eratior	n rate							
R١	N	Uni								US		
OL	ঢ়	0.0 to 3,200.0 s/100Hz					> 10.0					
CL	介	0.0	000 to 3,200.000			⇔	VT		2.0	00		
02	€ 0.000 to 3,200.000 s/1,000rpm						sv		0.2	200		

Set Pr 0.04 at the required rate of deceleration.

Note that larger values produce lower deceleration. The rate applies in both directions of rotation.

Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimization SMARTCARD operation Onboard PLC Advanced parameters Technical Data Diagnostic	UL Listing Information
---	---------------------------

0.0	0.05 {1.14} Reference select										
R١	N	Txt						NC		US	
Û	0 to 5				Û			A1.A2	(0)		

Use Pr 0.05 to select the required frequency/speed reference as follows:

Settin	ng	
A1.A2	0	Analog input 1 OR analog input 2 selectable by digital input, terminal 28
A1.Pr	1	Analog input 1 OR preset frequency/speed selectable by digital input, terminal 28 and 29
A2.Pr	2	Analog input 2 OR preset frequency/speed selectable by digital input, terminal 28 and 29
Pr	3	Pre-set frequency/speed
PAd	4	Keypad reference
Prc	5	Precision reference

Setting Pr **0.05** to 1, 2 or 3 will re-configure T28 and T29. Refer to Pr **8.39** (Pr **0.16** in OL) to disable this function.

0.0)6 {	4.07}	Curre	nt Lim	it					
R۱	N	V Uni				RA				
☆	0 to Cu		rrent limit max %				OL	16	5.0	
Ŷ	0 to current_innit_max %					~	CL	175.0		

Pr **0.06** limits the maximum output current of the drive (and hence maximum motor torque) to protect the drive and motor from overload.

Set Pr **0.06** at the required maximum torque as a percentage of the rated torque of the motor, as follows:

$$[0.06] = \frac{T_R}{T_{RATED}} \times 100 (\%)$$

Where:

T_R Required maximum torque

TRATED Motor rated torque

Alternatively, set 0.06 at the required maximum active (torqueproducing) current as a percentage of the rated active current of the motor, as follows:

$$[0.06] = \frac{I_R}{I_{RATED}} \times 100 \,(\%)$$

Where:

I_R Required maximum active currentI_{RATED} Motor rated active current

6.2.4 Voltage boost, (open-loop), Speed-loop PID gains (closed-loop)

0.0)7 {	5.14}	Voltag	je mod	le sele	cto	r			
R۱	Ν	Txt							US	
OL	€	Ur_S Ur_	i (0), Ui Auto (3 SrE		d (2), (4),	Û		Ur_I (4)	

Open-loop

There are six voltage modes available, which fall into two categories, vector control and fixed boost. For further details, refer to section *Pr* 0.07 {5.14} Voltage mode on page 107.

0.0	07 {	3.10}	Speed	l contr	oller p	rop	ortic	onal ga	in		
R١	Ν	Uni								US	
СІ	CL î;	0.	0000 te 1/rae		35	Û	VT		0.0	300	
	Ŷ				sv		0.0100				

Software V01.10.00 and later, the defaults are as above.

Software V01.09.01 and earlier, the default is 0.0100 in Closed-loop vector and servo mode.

Closed-loop

Pr **0.07** (**3.10**) operates in the feed-forward path of the speed-control loop in the drive. See Figure 11-4 on page 144 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimization* on page 106.

0.0)8 {	5.15}	Low f	requer	icy vol	tag	e bo	ost			
R١	N	Uni								US	
OL	ţ		otor	Û			1.0				

Open-loop

When **0.07** *Voltage mode selector* is set at **Fd** or **SrE**, set Pr **0.08** (**5.15**) at the required value for the motor to run reliably at low speeds.

Excessive values of Pr 0.08 can cause the motor to be overheated.

0.0)8 {	3.11}	Speed	l contr	oller ir	nteg	ıral ç	gain			
R١	Ν	Uni								US	
CL	☆	(0.00 to	655.35	5	台	VT		0.	10	
ΟL	Ŷ		1/rad						1.	00	

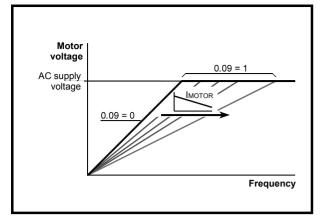
Software V01.10.00 and later, the defaults are as above.

Software V01.09.01 and earlier, the default is 1.00 in Closed-loop vector and servo modes.

Closed-loop

Pr **0.08** (3.11) operates in the feed-forward path of the speed-control loop in the drive. See Figure 11-4 on page 144 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimization* on page 106.

0.0)9 {	5.13}	Dynar	nic V/F	/ flux	opt	imiz	e selec	t		
R١	N	Bit								US	
OL	\hat{v}	0	FF (0)	合			OFF (D)			


Open-loop

Set Pr 0.09 (5.13) at 0 when the V/f characteristic applied to the motor is to be fixed. It is then based on the rated voltage and frequency of the motor.

Set Pr **0.09** at 1 when reduced power dissipation is required in the motor when it is lightly loaded. The V/f characteristic is then variable resulting in the motor voltage being proportionally reduced for lower motor currents. Figure 6-2 shows the change in V/f slope when the motor current is reduced.

Safety Information i	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-------------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Figure 6-2 Fixed and variable V/f characteristics

0.0)9 {	3.12}	Speed	l contr	oller d	iffe	renti	ial feed	back g	ain	
R١	N	Uni								US	
CL	\hat{v}	0.00	000 to	0.6553	85(s)	₽			0.0000	00	

Closed-loop

Pr **0.09** (**3.12**) operates in the feedback path of the speed-control loop in the drive. See Figure 11-4 on page 144 for a schematic of the speed controller. For information on setting up the speed controller gains, refer to Chapter 8 *Optimization* on page 106.

6.2.5 Monitoring

0.1	10 {	5.04}	Estim	ated m	otor s	pee	d			
R	0	Bit	FI					NC	PT	
OL	ŷ	:		₽						

Open-loop

Pr **0.10** (5.04) indicates the value of motor speed that is estimated from the following:

0.12 *Post-ramp frequency reference*

0.42 Motor - no. of poles

0.1	10 {	3.02}	Motor	speed	1				
R	0	Bi	FI				NC	PT	
VT	€	±S	Speed_	m	₽				

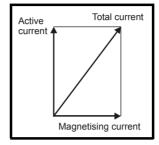
Closed-loop

Pr 0.10 (3.02) indicates the value of motor speed that is obtained from the speed feedback.

0.′	11 {	5.01}	Drive	output	freque	ency	/			
R	0	Bi	FI					NC	PT	
OL	$\hat{\mathbb{C}}$	±SPE	ED_FR	REQ_M	AX Hz	₽				
VT	€		±1250).0 Hz		Ŷ				

Open-loop & closed loop vector

Pr 0.11 displays the frequency at the drive output.


0.1	11 {	3.29}	Drive							
R	0	Uni	FI					NC	PT	
sv	ţ	1/2 ¹⁰	0 to 65,535 1/2 ¹⁶ ths of a revolution							

Servo

Pr 0.11 displays the position of the encoder in mechanical values of 0 to 65,535. There are 65,536 units to one mechanical revolution.

0.′	0.12 {4.01}		Total I	notor	current	t			
R	RO Uni FI						NC	PT	
Û	0 to Drive_current_max A				ax A	⇒			

Pr **0.12** displays the rms value of the output current of the drive in each of the three phases. The phase currents consist of an active component and a reactive component, which can form a resultant current vector as shown in the following diagram.

The active current is the torque producing current and the reactive current is the magnetizing or flux-producing current.

0.1	3 {4	4.02}	Motor	active	currer	nt			
RO)	Bi	FI				NC	PT	
OL VT	Û	±Dri	ve_cur	rent_m	ax A	Û			

Open-loop & closed loop vector

When the motor is being driven below its rated speed, the torque is proportional to [0.13].

0.13 {7.07} Analog input 1 offset trim												
R١	Ν	Bi	Bi US									
sv	\hat{v}		±10.000 %						0.00	0		

Servo

Pr **0.13** can be used to trim out any offset in the user signal to analog input 1.

6.2.6 Jog reference, Ramp mode selector, Stop and torgue mode selectors

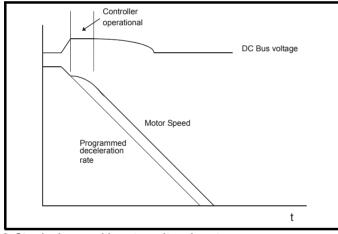
0.1	14 {	4.11}	Torqu	e mod	e selec	tor					
R١	N	Uni							US		
OL	↕		0 te	o 1		₽	Speed control (0)				
CL	\hat{v}		0 te	o 4		⇒	Opt				

Pr 0.14 is used to select the required control mode of the drive as follows:

Setting	Open-Loop	Closed-Loop
0	Frequency control	Speed control
1	Torque control	Torque control
2		Torque control with speed override
3		Coiler/uncoiler mode
4		Speed control with torque feed- forward

Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimiza	on SMARTCARD Onboard Advanced parameters Data Diagnostics UL Listing Information
---	--

0.1	15 {	2.04}	Ramp	mode	select					
R١	N	Txt							US	
OL	ţ		FAS Std Std.h	(1)		⇔		Std (1)	
CL	$\hat{\mathbf{v}}$		FAS Std			⇒				


Pr 0.15 sets the ramp mode of the drive as shown below:

0: Fast ramp

Fast ramp is used where the deceleration follows the programmed deceleration rate subject to current limits. This mode must be used if a braking resistor is connected to the drive.

1: Standard ramp

Standard ramp is used. During deceleration, if the voltage rises to the standard ramp level (Pr **2.08**) it causes a controller to operate, the output of which changes the demanded load current in the motor. As the controller regulates the link voltage, the motor deceleration increases as the speed approaches zero speed. When the motor deceleration rate reaches the programmed deceleration rate the controller ceases to operate and the drive continues to decelerate at the programmed rate. If the standard ramp voltage (Pr **2.08**) is set lower than the nominal DC bus level the drive will not decelerate the motor, but it will coast to rest. The output of the ramp controller (when active) is a current demand that is fed to the frequency changing current controller (Open-loop modes) or the torque producing current controller (Closed-loop vector or Servo modes). The gain of these controllers can be modified with Pr **4.13** and Pr **4.14**.

2: Standard ramp with motor voltage boost

This mode is the same as normal standard ramp mode except that the motor voltage is boosted by 20%. This increases the losses in the motor, dissipating some of the mechanical energy as heat giving faster deceleration.

0.1	16 {	8.39}	T28 a	T28 and T29 auto-selection disable									
R\	Ν	Bit	US										
OL	ţ	0	PFF (0) or On (1)			₽			OFF (D)			

Open-loop

When Pr **0.16** is set to 0, digital inputs T28 and T29 are set up automatically with destinations according to the setting of the reference select Pr **0.05**.

Ref	erence select 0.05	Terminal 28 function	Terminal 29 function
A1.A2 (0)	Reference selection by terminal input	Local / remote selector	Jog select
A1.Pr (1)	Analogue reference 1 or presets selected by terminal input	Preset select bit 0	Preset select bit 1
A2.Pr (2)	Analogue reference 2 or presets selected by terminal input	Preset select bit 0	Preset select bit 1
Pr (3)	Preset reference selected by terminal input	Preset select bit 0	Preset select bit 1
PAd (4)	Keypad reference selected	Local / remote selector	Jog select
Prc (5)	Precision reference selected	Local / remote selector	Jog select

Setting Pr **0.16** to 1 disables this automatic set-up, allowing the user to define the function of digital inputs T28 and T29.

0.1	0.16 {2.02} Ramp enable											
R١	N	Bit								US		
CL	$\hat{\mathbb{T}}$	OFF (0) or On (1)			1)	₽			On (1)		

Closed-loop

Setting Pr **0.16** to 0 allows the user to disable the ramps. This is generally used when the drive is required to closely follow a speed reference which already contains acceleration and deceleration ramps.

0.17 {8.26} T29 digital input destination											
R١	N	Uni		DE					PT	US	
OL	\hat{v}	Pr	Pr 0.00 to Pr 21.51						Pr 6. 3	31	

Open-loop

Pr **0.17** sets the destination of digital input T29. This parameter is normally set-up automatically according to the reference selected by Pr **0.05**. In order to manually set-up this parameter, the T28 and T29 auto-selection disable (Pr **0.16**) must be set.

0.1	0.17 {4.12} Current demand filter time constant										
R١	N	Uni								US	
CL	\hat{v}		0.0 to 2	25.0 ms		₽			0.0		

Closed-loop

A first order filter, with a time constant defined by Pr **0.17**, is provided on the current demand to reduce acoustic noise and vibration produced as a result of position feedback quantization noise. The filter introduces a lag in the speed loop, and so the speed loop gains may need to be reduced to maintain stability as the filter time constant is increased.

0.1	18 {	8.29}	Positi	ve logi	c selec	t				_
R۱	N	Bit						PT	US	
Û	OFF (0) or On (1)				Ŷ		On (′	1)		

 $\mathsf{Pr}~0.18$ sets the logic polarity for digital inputs and digital outputs. This does not affect the drive enable input or the relay output.

0.1	0.19 {7.11} Analog input 2 mode										
R١	Ν	Txt US									
€			0 to (6		₽			VOLt (6)	

In modes 2 & 3 a current loop loss trip is generated if the current falls below 3mA.

In modes 2 & 4 the analog input level goes to 0.0% if the input current falls below 4mA.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Pr value	Pr string	Mode	Comments
0	0-20	0 - 20mA	
1	20-0	20 - 0mA	
2	4-20.tr	4 - 20mA with trip on loss	Trip if I < 3mA
3	20-4.tr	20 - 4mA with trip on loss	Trip if I < 3mA
4	4-20	4 - 20mA with no trip on loss	0.0% if I ≤ 4mA
5	20-4	20 – 4mA with no trip on loss	100% if I ≤ 4mA
6	VOLt	Voltage mode	

0.2	0.20 {7.14} Analog input 2 destination										
R١	N	Uni		DE					PT	US	
Û	Pr 0.00 to Pr 21.51				₽			Pr 1.3	37		

Pr 0.20 sets the destination of analog input 2.

0.2	0.21 {7.15} Analog input 3 mode										
R١	Ν	Txt							PT	US	
Û			0 to	9		⇔			th (8))	

Software V01.07.00 and later, the default is th (8)

Software V01.06.02 and earlier, the default is VOLt (6)

In modes 2 & 3 a current loop loss trip is generated if the current falls below 3mA.

In modes 2 & 4 the analog input level goes to 0.0% if the input current falls below 4mA.

Pr value	Pr string	Mode	Comments
0	0-20	0 - 20mA	
1	20-0	20 - 0mA	
2	4-20.tr	4 - 20mA with trip on loss	Trip if I < 3mA
3	20-4.tr	20 - 4mA with trip on loss	Trip if I < 3mA
4	4-20	4 - 20mA with no trip on loss	0.0% if I \leq 4mA
5	20-4	20 - 4mA with no trip on loss	100% if I \leq 4mA
6	VOLt	Voltage mode	
7	th.SC	Thermistor mode with short- circuit detection	Th trip if R > 3K3 Th reset if R < 1K8 ThS trip if R < 50R
8	th	Thermistor mode with no short-circuit detection	Th trip if R > 3K3 Th reset if R < 1K8
9	th.diSp	Thermistor mode with display only and no trip	

0.2	22 {	1.10}	Bipola	ar refe	rence s	seleo	ct				
R١	N	Bit								US	
Û	OFF (0) or On (1)		⇔		OFF (0)						

 $\mathsf{Pr}\,\mathbf{0.22}$ determines whether the reference is uni-polar or bi-polar as follows:

Pr 0.22	Function								
0	Unipolar speed/frequency reference								
1	Bipolar speed/frequency reference								

0.23 {	1.05}	Jog reference									
RW	Uni								US		
OL 🗘		0 to 400.0 Hz			₽		0.0				
CL 🗘	() to 4,00	n	⇒		0.0					

Enter the required value of jog frequency/speed.

The frequency/speed limits affect the drive when jogging as follows:

Frequency-limit parameter	Limit applies
Pr 0.01 Minimum reference clamp	No
Pr 0.02 Maximum reference clamp	Yes

0.2	0.24 {1.21} Preset reference 1									
R۱	N	Bi							US	
€	±Speed_limit_max rpm					⇔		0.0		

0.2	25 {1.22} Preset reference 2												
R١	Ν	Bi		US									
Û		±Spee	d_limit	_max r	pm	₽			0.0				

0.2	26 {	1.23}	Preset							
R۱	N	Bi							US	
OL	$\hat{\mathbb{T}}$	±Spee	ed_freq	_max ⊦	lz/rpm	₽		0.0		

Open-loop

If the preset reference has been selected (see Pr **0.05**), the speed at which the motor runs is determined by these parameters.

0.2	26 {	3.08}	Overspeed threshold								
R\	N	Uni							US		
CL	₿	C	0 to 40,000 rpm			₽			0		

Closed-loop

If the speed feedback (Pr **3.02**) exceeds this level in either direction, an overspeed trip is produced. If this parameter is set to zero, the overspeed threshold is automatically set to: 120% x SPEED_FREQ_MAX.

0.27 {1.24} Preset reference 4											
R۱	N	Bi								US	
OL	$\hat{\mathbb{T}}$	±Spee	ed_freq	_max ⊦	lz/rpm	₽			0.0		

Open-loop

Refer to Pr 0.24 to Pr 0.26.

0.2	27 {	3.34}	Drive	Drive encoder lines per revolution									
R۱	N	Uni							US				
VT	$\hat{\mathbb{C}}$		0 to 5	0 000		⇒ 1024							
sv	ţ		0100	0,000		₽			4096	6			

Closed-loop

Enter in Pr 0.27 the number of lines per revolution of the drive encoder.

Safety Product Mechanical Electrical Getting Basic Information information Installation Installation Started parameter	Running the motor Optimization	SMARTCARD Onboar operation PLC	d Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------------------	-----------------------------------	-----------------------	-------------------	-------------	---------------------------

0.2	28 {	6.13}	Keypa	d fwd/	rev key	/ en	abl	е			
R۱	Ν	Bit US									
$\hat{\mathbf{r}}$		OFI	F (0) or	On (1)		₽			OFF (0)	

When a keypad is installed, this parameter enables the forward/reverse key.

0.2	29 {1	1.36}	SMAR	TCAR	D paraı	net	er d	lata			
R	0	Uni						NC	PT	US	
Û			0 to 9	99		⇔			0		

This parameter shows the number of the data block last transferred from a SMARTCARD to the drive.

0.3	0.30 {11.42} Parameter copying										
R١	N	Txt						NC		*	
\hat{v}			0 to ·	4		⇒			nonE	(0)	

* Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved.

NOTE

If Pr **0.30** is equal to 1 or 2 this value is not transferred to the EEPROM or the drive. If Pr **0.30** is set to a 3 or 4 the value is transferred.

Pr String	Pr value	Comment
nonE	0	Inactive
rEAd	1	Read parameter set from the SMARTCARD
Prog	2	Programming a parameter set to the SMARTCARD
Auto	3	Auto save
boot	4	Boot mode

For further information, please refer to Chapter 9 SMARTCARD operation on page 119.

0.3	1 {1	1.33}	Drive	rated v	oltage	_	-			
R	0	Txt						NC	PT	
$\hat{\mathbf{v}}$	20	00V (0),	400V (690V		5V (2),	⇔				

Pr 0.31 indicates the voltage rating of the drive.

0.3	0.32 {11.32} Maximum Heavy Duty current rating											
R	0	Uni						NC	PT			
ţ	0.00 to 9,999.99 A											

Pr 0.32 indicates the maximum continuous Heavy Duty current rating.

0.3	0.33 (6.09) Catch a spinning motor											
R۱	Ν	Uni							US			
OL	$\hat{\mathbb{T}}$	0 to 3				⇔		0				

Open-loop

When the drive is enabled with Pr **0.33** = 0, the output frequency starts at zero and ramps to the required reference. When the drive is enabled when Pr **0.33** has a non-zero value, the drive performs a start-up test to determine the motor speed and then sets the initial output frequency to the synchronous frequency of the motor. Restrictions may be placed on the frequencies detected by the drive as follows:

Pr 0.33	Function
0	Disabled
1	Detect all frequencies
2	Detect positive frequencies only
3	Detect negative frequencies only

0.33 {5.16} Rated rpm autotune

	ου ι											
R۱	Ν	Uni								US		
VТ	\hat{v}		0 to	o 2		₽			0			

Closed-loop vector

The motor rated full load rpm parameter (Pr 0.45) in conjunction with the motor rated frequency parameter (Pr 0.46) defines the full load slip of the motor. The slip is used in the motor model for closed-loop vector control. The full load slip of the motor varies with rotor resistance which can vary significantly with motor temperature. When Pr 0.33 is set to 1 or 2, the drive can automatically sense if the value of slip defined by Pr 0.45 and Pr 0.46 has been set incorrectly or has varied with motor temperature. If the value is incorrect parameter Pr 0.45 is automatically adjusted. The adjusted value in Pr 0.45 is not saved at power-down. If the new value is required at the next power-up it must be saved by the user.

Automatic optimization is only enabled when the speed is above 12.5% of rated speed, and when the load on the motor load rises above 62.5% rated load. Optimization is disabled again if the load falls below 50% of rated load.

For best optimization results the correct values of stator resistance (Pr **5.17**), transient inductance (Pr **5.24**), stator inductance (Pr **5.25**) and saturation breakpoints (Pr **5.29**, Pr **5.30**) should be stored in the relevant parameters. These values can be obtained by the drive during an autotune (see Pr **0.40** for further details).

Rated rpm auto-tune is not available if the drive is not using external position/speed feedback.

The gain of the optimizer, and hence the speed with which it converges, can be set at a normal low level when Pr **0.33** is set to 1. If this parameter is set to 2 the gain is increased by a factor of 16 to give faster convergence.

0.3	4 {1	11.30} User security code										
R١	Ν	Uni						NC	PT		PS	
ţ		0 to 999							0			

If any number other than 0 is programmed into this parameter, user security is applied so that no parameters except parameter **0.49** can be adjusted with the keypad. When this parameter is read via a keypad it appears as zero.

For further details refer to section 5.9.3 User Security on page 77.

0.3	0.35 {11.24} Serial comms mode												
R١	N	Txt								US			
ţ		AnSI (0), rtu (1), Lcd	(2)	₽			rtU (′	1)			

This parameter defines the communications protocol used by the EIA485 comms port on the drive. This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original protocol. The master should wait at least 20ms before send a new message using the new protocol. (Note: ANSI uses 7 data bits, 1 stop bit and even parity; Modbus RTU uses 8 data bits, 2 stops bits and no parity.)

Diagnostics	Safety Information		Lioouriour		Running rs the motor	Optimization			Advanced parameters	Data	Diagnostics	UL Listing Information
-------------	-----------------------	--	------------	--	-------------------------	--------------	--	--	---------------------	------	-------------	---------------------------

Comms value	String	Communications mode
0	AnSI	ANSI
1	rtU	Modbus RTU protocol
2	Lcd	Modbus RTU protocol, but with an SM- Keypad Plus only

ANSIx3.28 protocol

Full details of the CT ANSI communications protocol are the *Advanced User Guide*.

Modbus RTU protocol

Full details of the CT implementation of Modbus RTU are given in the *Advanced User Guide*.

Modbus RTU protocol, but with an SM-Keypad Plus only

This setting is used for disabling communications access when the SM-Keypad Plus is used as a hardware key.

0.3	36 {1	1.25}	Serial	comm	s baud	l rat	e			
R١	N	Txt							US	
€			•	4), 960 8400 (7	10 (5), 7),	Ŷ		19200	(6)	

* only applicable to Modbus RTU mode

This parameter can be changed via the drive keypad, via a Solutions Module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20ms before send a new message using the new baud rate.

0.3	0.37 {11.23} Serial comms address												
R١	Ν	Uni	Jni US										
Û	0 to 247					₽			1				

Used to define the unique address for the drive for the serial interface. The drive is always a slave.

Modbus RTU

When the Modbus RTU protocol is used addresses between 0 and 247 are permitted. Address 0 is used to globally address all slaves, and so this address should not be set in this parameter

ANSI

When the ANSI protocol is used the first digit is the group and the second digit is the address within a group. The maximum permitted group number is 9 and the maximum permitted address within a group is 9. Therefore, Pr **0.37** is limited to 99 in this mode. The value 00 is used to globally address all slaves on the system, and x0 is used to address all slaves of group x, therefore these addresses should not be set in this parameter.

0.3	38 {	4.13}	Curre	nt loop	P gair	ì				
R١	N	Uni							US	
OL	\hat{v}					₽	All vo	ltage ra	atings: 2	20
CL	€		0 to 3	0,000		仓	40 57	00V driv 0V driv 5V driv 0V driv	e: 150 e: 180	

0.39 {	4.14}	Current loop I gain								
RW	Uni								US	
0 L ₿					Û		All vo	ltage ra	atings: 4	40
CL 🗘		0 to 3	0,000		Ŷ		400 575)V drive 5V drive	e: 1,000 e: 2,000 e: 2,400 e: 3,000	

These parameters control the proportional and integral gains of the current controller used in the open loop drive. The current controller either provides current limits or closed loop torque control by modifying the drive output frequency. The control loop is also used in its torque mode during line power supply loss, or when the controlled mode standard ramp is active and the drive is decelerating, to regulate the flow of current into the drive.

0.4	40 {	5.12}	Autot	une			
R١	N	Uni					
OL	\hat{v}		0 te	o 2	⇔	0	
VT	ţ		0 te	o 4	⇔	0	
sv	\hat{v}		0 te	o 6	⇔	0	

Open-Loop

There are two autotune tests available in open loop mode, a stationary and a rotating test. A rotating autotune should be used whenever possible, so the measured value of power factor of the motor is used by the drive.

- The stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft.
- A rotating autotune first performs a stationary autotune, before rotating the motor at $^{2}/_{3}$ base speed in the forward direction for several seconds. The motor must be free from load for the rotating autotune.

To perform an autotune, set Pr **0.40** to 1 for a stationary test or 2 for a rotating test, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

To perform an autotune, set Pr **0.40** to 1 for a stationary test or 2 for a rotating test, and provide the drive with an enable signal (on terminal 31) and press the green (hand) button.

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 106.

Closed-loop

There are three autotune tests available in closed loop vector mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

- The stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft.
- A rotating autotune first performs a stationary autotune, before rotating the motor at 2 /₃ base speed in the forward direction for approximately 30 seconds. The motor must be free from load for the rotating autotune.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

 The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see Speed loop gains, below) and to provide torque feed forwards when required during acceleration. During the inertia measurement test

the motor speed changes from 1/3 to 2/3 rated speed in the forward direction several times. The motor can be loaded with a constant torque load and still give an accurate result, however, non-linear loads and loads that change with speed will cause measurement errors.

To perform an autotune, set Pr **0.40** to 1 for a stationary test, 2 for a rotating test, or 3 for an inertia measurement test and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Setting Pr **0.40** to 4 will cause the drive to calculate the current loop gains based on the previously measured values of motor resistance and inductance. The drive does apply any voltage to the motor during this test. The drive will change Pr **0.40** back to 0 as soon as the calculations are complete (approximately 500ms).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 109.

Servo

There are five autotune tests available in servo mode, a short low speed test, a normal low speed test, an inertia measurement test, a stationary test and a minimal movement test. A normal low speed should be done where possible as the drive measures the stator resistance and inductance of the motor, and from these calculates the current loop gains. An inertia measurement test should be performed separately to a short low speed or normal low speed autotune.

- A short low speed test will rotate the motor by 2 electrical revolutions (i.e. up to 2 mechanical revolutions) in the forward direction, and measure the encoder phase angle. The motor must be free from load for this test.
- A normal low speed test will rotate the motor by 2 electrical revolutions (i.e. up to 2 mechanical revolutions) in the forward direction. This test measures the encoder phase angle and updates other parameters including the current loop gains. The motor must be free from load for this test.
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains and to provide torque feed forwards when required during acceleration. During the inertia measurement test the motor speed changes from

 $^{1}/_{3}$ to $^{2}/_{3}$ rated speed in the forward direction several times. The motor can be loaded with a constant torque load and still give an accurate result, however, non-linear loads and loads that change with speed will cause measurement errors.

- The stationary test only measures the motor resistance and inductance, and updates the current loop gain parameters. This test does not measure the encoder phase angle so this test needs to be done in conjunction with either the short low speed or minimal movement tests.
- The minimal movement test will move the motor through a small angle to measure the encoder phase angle. This test will operate correctly when the load is an inertia, and although a small amount of cogging and stiction is acceptable, this test cannot be used for a loaded motor.

To perform an autotune, set Pr **0.40** to 1 for a short low speed test, 2 for a normal low speed test, 3 for an inertia measurement test, 4 for a stationary test or 5 for a minimal movement test, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Setting Pr **0.40** to 6 will cause the drive to calculate the current loop gains based on the previously measured values of motor resistance and inductance. The drive does apply any voltage to the motor during this test. The drive will change Pr **0.40** back to 0 as soon as the calculations are complete (approximately 500ms).

For further information refer to section *Pr 0.40 {5.12} Autotune* on page 112.

0.4	1 {	5.18}	Maxin	num sv	vitchin	g fi	requ	ency			
R\	N	Txt				F	RA			US	
OL						⊳			3 (0)		
CL	ţ	3	(0), 4 ((1), 6 (2	2)	⇒	VT		3 ((0)	
02							sv		6 ((2)	

This parameter defines the required switching frequency. The drive may automatically reduce the actual switching frequency (without changing this parameter) if the power stage becomes too hot. A thermal model of the IGBT junction temperature is used based on the heatsink temperature and an instantaneous temperature drop using the drive output current and switching frequency. The estimated IGBT junction temperature is displayed in Pr **7.34**. If the temperature exceeds 145°C the switching frequency is reduced if this is possible (i.e >3kHz). Reducing the switching frequency reduces the drive losses and the junction temperature displayed in Pr **7.34** also reduces. If the load condition persists the junction temperature may continue to rise again above 145°C and the drive cannot reduce the switching frequency further the drive will initiate an 'O.ht1' trip. Every second the drive will attempt to restore the switching frequency to the level set in Pr **0.41**.

The full range of switching frequencies is not available on all ratings of Unidrive SP. See section 8.5 *Switching frequency* on page 117, for the maximum available switching frequency for each drive rating.

6.2.7 Motor parameters

0.4	12 {	5.11}	No. of	moto	r poles					
R١	N	Txt							US	
OL	\hat{v}					Û		Auto (0)	
CL	☆	0 to 60) (Auto	to 120	Pole)	⇒	VT	Auto	o (0)	
-	v						sv	6 POI	E (3)	

Open-loop

This parameter is used in the calculation of motor speed, and in applying the correct slip compensation. When auto is selected, the number of motor poles is automatically calculated from the rated frequency (Pr **0.47**) and the rated full load rpm (Pr **0.45**). The number of poles = $120 \times 1000 \text{ rgm}$ rounded to the nearest even number.

Closed-loop vector

This parameter must be set correctly for the vector control algorithms to operate correctly. When auto is selected, the number of motor poles is automatically calculated from the rated frequency ($\Pr 0.47$) and the rated full load rpm ($\Pr 0.45$). The number of poles = 120 * rated frequency / rpm rounded to the nearest even number.

Servo

This parameter must be set correctly for the vector control algorithms to operate correctly. When auto is selected the number of poles is set to 6.

0.4	43 {	5.10}	Motor	rated	power	factor			
R١	Ν	Uni						US	
OL	\hat{v}		0.000 to	n 1 000		⇔	0.85	n	
VT	\hat{v}		0.000 1	5 1.000	•	⇔	0.00	0	

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current.

Open-loop

The power factor is used in conjunction with the motor rated current (Pr **0.46**) to calculate the rated active current and magnetizing current of the motor. The rated active current is used extensively to control the drive, and the magnetizing current is used in vector mode Rs compensation. It is important that this parameter is set up correctly.

This parameter is obtained by the drive during a rotational autotune. If a stationary autotune is carried out, then the nameplate value should be entered in Pr 0.43.

Closed-loop vector

If the stator inductance (Pr 5.25) contains a non-zero value, the power factor used by the drive is continuously calculated and used in the vector control algorithms (this will not update Pr 0.43).

If the stator inductance is set to zero (Pr **5.25**) then the power factor written in Pr **0.43** is used in conjunction with the motor rated current and other motor parameters to calculate the rated active and magnetizing currents which are used in the vector control algorithm.

This parameter is obtained by the drive during a rotational autotune. If a stationary autotune is carried out, then the nameplate value should be entered in Pr 0.43.

0.4	43 {	3.25}	Encoc	ler pha	ise ang	le				
R١	N	Uni							US	
sv	\hat{v}		0.0 to	359.9°		₽		0.0		

The phase angle between the rotor flux in a servo motor and the encoder position is required for the motor to operate correctly. If the phase angle is known it can be set in this parameter by the user. Alternatively the drive can automatically measure the phase angle by performing a phasing test (see autotune in servo mode Pr **0.40**). When the test is complete the new value is written to this parameter. The encoder phase angle can be modified at any time and becomes effective immediately. This parameter has a factory default value of 0.0, but is not affected when defaults are loaded by the user.

	0.4	4 {	5.09}	Motor	rated	voltage	•					
	R۷	N	Uni				R	A			US	
Į	¢	A	C_VOL	0 to TAGE_		1AX V	仓		400V 57	0V driv drive: E U 5V driv 0V driv	EUR> 4 SA> 46 e: 575	

Open-loop & Closed-loop vector

Enter the value from the rating plate of the motor.

0.4	45 {	5.08}	Motor	rated	full loa	ad s	pee	d (rpm)			
R١	N	Uni								US	
OL	ţ	0	to 180,	,000 rp	m	合			UR> 1, ISA> 1,		
νт	ţ	0.00	to 40,0	rpm	合			IR> 1,4 SA> 1,7			

Open-loop

This is the speed at which the motor would rotate when supplied with its base frequency at rated voltage, under rated load conditions (=

synchronous speed - slip speed). Entering the correct value into this parameter allows the drive to increase the output frequency as a function of load in order to compensate for this speed drop.

Slip compensation is disabled if Pr **0.45** is set to 0 or to synchronous speed, or if Pr **5.27** is set to 0.

If slip compensation is required this parameter should be set to the value from the rating plate of the motor, which should give the correct rpm for a hot machine. Sometimes it will be necessary to adjust this when the drive is commissioned because the nameplate value may be inaccurate. Slip compensation will operate correctly both below base speed and within the field weakening region. Slip compensation is normally used to correct for the motor speed to prevent speed variation with load. The rated load rpm can be set higher than synchronous speed to deliberately introduce speed droop. This can be useful to aid load sharing with mechanically coupled motors.

Closed loop vector

Rated load rpm is used with motor rated frequency to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter can result in the following:

- Reduced efficiency of motor operation
- Reduction of maximum torque available from the motor
- Failure to reach maximum speed
- Over-current trips
- Reduced transient performance

• Inaccurate control of absolute torque in torque control modes The nameplate value is normally the value for a hot machine, however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate.

The rated full load rpm can be optimized by the drive (For further information, refer to section 8.1.3 *Closed loop vector motor control* on page 111).

0.4	ł5 {⁄	4.15}	Motor	therm	al time	e co	nsta	int			
R١	N	Uni								US	
sv	\hat{v}		0 to 3	0.000		合			20.0		

Servo

Pr 0.45 is the motor thermal time constant of the motor, and is used (along with the motor rated current Pr 0.46, and total motor current Pr 0.12) in the thermal model of the motor in applying thermal protection to the motor.

Setting this parameter to 0 disables the motor thermal protection.

For further details, refer to section 8.4 *Motor thermal protection* on page 116.

0.4	46 {	5.07}	Motor	rated	current						
R۱	N	Uni				R	А			US	
€	C) to Rat	ed_cur	rent_m	ax A	⇔	I	Drive ra	ted cur	rent [11	.32]

Enter the name-plate value for the motor rated current.

0.4	47 {	5.06}	Rated	freque	ency					
R١	N	Uni							US	
OL	\hat{v}		0 to 3,0	00.0Hz	2	₽	EUR>	50.0, L	JSA> 6	0.0
VT	ţ		0 to 1,2	2	₽	EUR>	50.0, L	JSA> 6	0.0	

Open-loop & Closed-loop vector

Enter the value from the rating plate of the motor.

Safety	Product	Mechanical	Electrical	Getting	Basic	Runnina		SMARTCARD	Onboard	Advanced	Technical		UL Listina
			Lioounoan	Cotting			Optimization					Diagnostics	· · · · · · J
Information	information	Installation	Installation	Started	parameters	the motor	opumzadon	operation	PLC	parameters	Data	Diagnootioo	Information
monnauon	incination	motanation	motanation	oluniou	parameters			operation	. 20	parameters	Data		monnation

6.2.8 Operating-mode selection

0.	0.48 {11.31} Operating mode selector										
F	RM	Txt	NC						PT		
							OL			1	
ţ	1 to 4				⊳	VT		2	2		
							sv		:	3	

The settings for Pr 0.48 are as follows:

Setting		Operating mode
OPEn LP	1	Open-loop
CL VECt	2	Closed-loop vector
SerVO	3	Servo
rEgEn	4	Regen

This parameter defines the drive operating mode. Pr **xx.00** must be set to 1253 (European defaults) or 1254 (USA defaults) before this parameter can be changed. When the drive is reset to implement any change in this parameter, the default settings of all parameters will be set according to the drive operating mode selected and saved in memory.

6.2.9 Status information

0.4	9 {11.44} Security status										
R١	Ν	Txt							PT	US	
\hat{U}	0 to 2				⇔			0			

This parameter controls access via the drive keypad as follows:

Value	String	Action
0	L1	Only menu 0 can be accessed
1	L2	All menus can be accessed
2	Loc	Lock user security when drive is reset. (This parameter is set to L1 after reset.)

The keypad can adjust this parameter even when user security is set.

0.5	0.50 {11.29} Software version number									
R	0	Uni						NC	PT	
ţ		1.00 to 99.99				⊳				

The parameter displays the software version of the drive.

0.5	0.51 {10.37} Action on trip detection										
R١	N	Uni								US	
€	0 to 15				⇔			0			

Each bit in this parameter has the following functions:

Bit	Function
0	Stop on non-important trips
1	Disable braking IGBT trips
2	Disable phase loss trip (Unidrive SP size 0 only)
3	Disable braking resistor temperature monitoring failure detection. (Unidrive SP size 0 only)

Stop on non-important trips

If bit 0 is set to zero then the drive simply trips when a non-important trip occurs. Non-important trips are: th, ths, Old1, cL2, cL3, SCL. If bit 0 is set to one the drive will stop before tripping when one of these trips is initiated, except in Regen mode where the drive trips immediately.

Disable braking IGBT trips

For details of braking IGBT trip mode see Pr 10.31.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Running the motor 7

This chapter takes the new user through all the essential steps to running a motor for the first time, in each of the possible operating modes.

For information on tuning the drive for the best performance, see Chapter 8 Optimization .

Ensure that no damage or safety hazard could arise from the motor starting unexpectedly.

The values of the motor parameters affect the protection of the motor.

The default values in the drive should not be relied upon. It is essential that the correct value is entered in Pr 0.46 Motor

rated current. This affects the thermal protection of the motor.

If the keypad mode has been used previously, ensure that

the keypad reference has been set to 0 using the buttons as if the drive is started using the keypad it will run to CAUTION the speed defined by the keypad reference (Pr 0.35).

If the intended maximum speed affects the safety of the machinery, additional independent over-speed protection must be used.

7.1 Quick start Connections

7.1.1 **Basic requirements**

This section shows the basic connections which must be made for the drive to run in the required mode. For minimal parameter settings to run in each mode please see the relevant part of section 7.3 Quick Start commissioning/start-up on page 98.

Table 7-1 Minimum control connection requirements for each control mode

Drive control method	Requirements
Terminal mode	Drive Enable Speed reference Run forward or run reverse command
Keypad mode	Drive Enable
Serial communications	Drive Enable Serial communications link

Table 7-2 Minimum control connection requirements for each mode of operation

Operating mode	Requirements
Open loop mode	Induction motor
Closed loop vector mode	Induction motor with speed feedback
Closed loop servo mode	Permanent magnet motor with speed and position feedback

Speed feedback

Suitable devices are:

- Incremental encoder (A, B or F, D with or without Z)
- Incremental encoder with forward and reverse outputs (F, R with or without Z)
- SINCOS encoder (with, or without Stegmann Hiperface, EnDat or SSI communications protocols)
- EnDat absolute encoder

Speed and position feedback

Suitable devices are:

- Incremental encoder (A, B or F, D with or without Z) with commutation signals (U, V, W)
- Incremental encoder with forward and reverse outputs (F. R with or without Z) and commutation outputs (U, V, W)
- SINCOS encoder (with Stegmann Hiperface, EnDat or SSI communications protocols)
- EnDat absolute encoder

For Solutions Module terminal information see section 11.15 Menus 15, 16 and 17: Solutions Module set-up on page 185 or the appropriate Solutions Module option user guide.

7.2 Changing the operating mode

Changing the operating mode returns all parameters to their default value, including the motor parameters. (Pr 0.49 and Pr 0.34 are not affected by this procedure.)

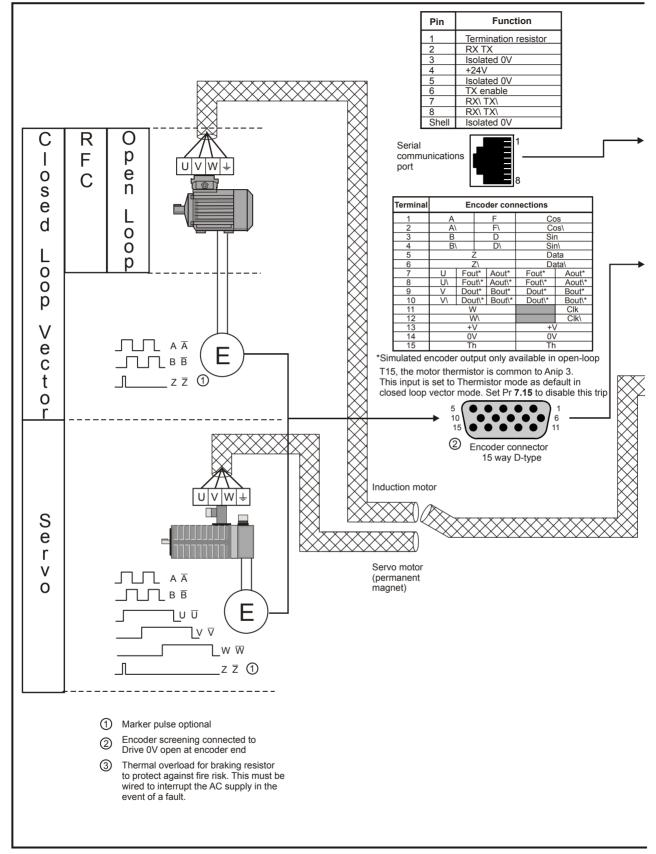
Procedure

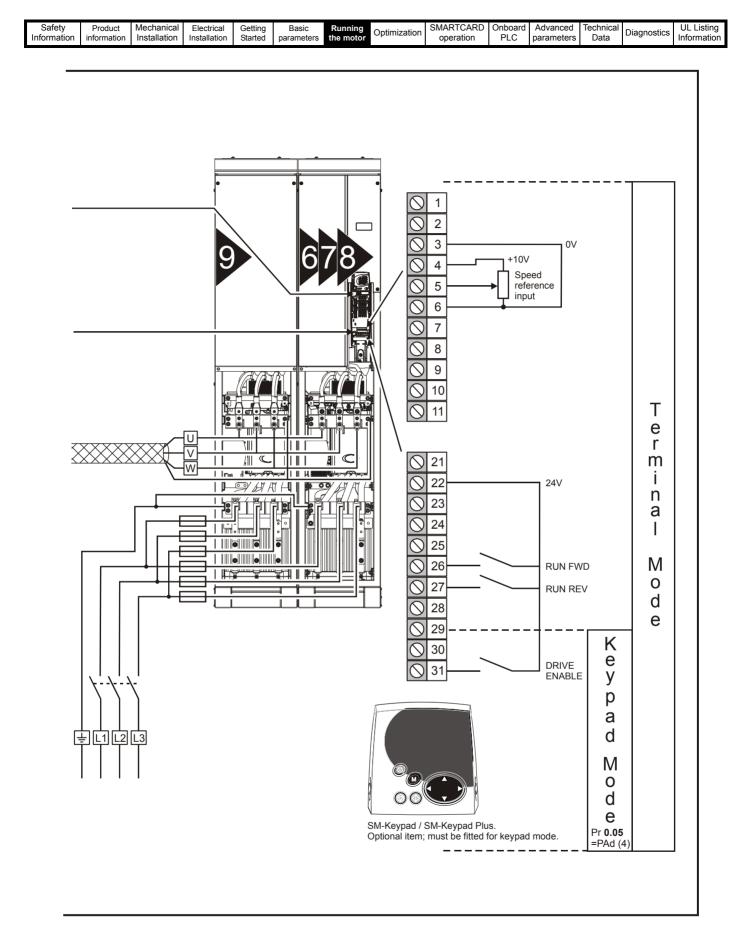
Use the following procedure only if a different operating mode is required:

- 1. Enter either of the following values in Pr xx.00, as appropriate: 1253 (EUR, 50Hz AC supply frequency) 1254 (USA, 60Hz AC supply frequency)
- 2. Change the setting of Pr 0.48 as follows:

Pr 0.48 setting		Operating mode
048 026n LP	1	Open-loop
С. UECE	2	Closed-loop vector and RFC mode
0,48 56+00	3	Closed-loop Servo
048 1696n	4	Free Standing drives are not intended to be used in regen mode

The figures in the second column apply when serial communications are used


3. Either:


- Press the red (reset button
- Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.38 to 100 (ensure that Pr. xx.00 returns to 0).

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Figure 7-1 Minimum connections to get the motor running in any operating mode

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

7.3 Quick Start commissioning/start-up

7.3.1 Open loop

Action	Detail	
Before power-up	 Ensure: The drive enable signal is not given (terminal 31) Run signal is not given Motor is connected 	\times
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 242.	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Set maximum frequency	Enter: • Maximum frequency in Pr 0.02 (Hz)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/100Hz) Deceleration rate in Pr 0.04 (s/100Hz) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	100Hz
Autotune	 The drive is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A rotating autotune should be used whenever possible so the measured value of power factor of the motor is used by the drive. A rotating autotune will cause the motor to accelerate up to ²/₃ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The enable signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the drive enable. A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. A stationary autotune measures the stator resistance of the motor and the voltage offset in the drive. These are required for good performance in vector control modes. A stationary autotune does not measure the power factor of the motor so the value on the motor is uncoupled. A rotating autotune first performs a stationary autotune before rotating the motor at 2/₃ base speed in the direction selected. The rotating autotune measures the power factor of the motor. To perform an autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY'. Close the run signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the autotune. Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill. If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 242. Remove the drive enable and run signal from the drive. 	
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	* O

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

7.3.2 RFC mode

Software V01.10.00 or later should be used for RFC mode.

Induction motor

Action	Detail	
Before power-up	 Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor and feedback device are connected 	\times
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 242.	7
Select RFC mode and disable encoder wire-break trip	 Set Pr 3.24 = 1 or 3 to select RFC mode Set Pr 3.40 = 0 	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed (base speed - slip speed) in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if 人 or △ connection 	
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	1000pm
Select or deselect catch a spinning motor mode	If catch a spinning motor mode is not required then set Pr 6.09 to 0. If catch a spinning motor mode is required then leave Pr 6.09 at the default of 1, but depending on the size of the motor the value in Pr 5.40 may need to be adjusted. Pr 5.40 defines a scaling function used by the algorithm that detects the speed of the motor. The default value of Pr 5.40 is 1 which is suitable for small motors (<4kW). For larger motors the value in Pr 5.40 will need to be increased. Approximate values of Pr 5.40 for different motor sizes are as follows, 2 for 11kW, 3 for 55kW and 5 for 150kW. If the value of Pr 5.40 is too large the motor may accelerate from standstill when the drive is enabled. If the value of this parameter is too small the drive will detect the motor speed as zero even if the motor is spinning.	
	The drive is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. NOTE It is highly recommended that a rotating autotune is performed (Pr 0.40 set to 2).	
	A rotating autotune will cause the motor to accelerate up to ² / ₃ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The enable signal must be removed before the drive can be made to run at the required reference. IVARINING The drive can be stopped at any time by removing the run signal or removing the drive enable. • A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load	
Autotune	 from the motor shaft. The stationary autotune measures the stator resistance and transient inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.38 and Pr 0.39 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. A rotating autotune should only be used if the motor is uncoupled. A rotating autotune first performs a stationary autotune before rotating the motor at ²/₃ base speed in the direction selected. The rotating autotune measures the stator inductance of the motor and calculates the power factor. 	T Saturation Dreak- points N rpm
	 To perform an autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY'. Close the run signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the autotune. Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill. If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 242. Remove the drive enable and run signal from the drive. 	
Save parameters	Enter 1000 in Pr xx.00 Press the red reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	· Or

Safety Information		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	--	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

7.3.3 Closed loop vector mode

Induction motor with incremental encoder feedback

For simplicity only an incremental quadrature encoder will be considered here. For information on setting up one of the other supported speed feedback devices, refer to section 7.5 Setting up a feedback device on page 102.

Action	Detail	
Before power-up	 Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor and feedback device are connected 	\times
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 242.	[7
Set motor feedback parameters	 Incremental encoder basic set-up Enter: Drive encoder type in Pr 3.38 = Ab (0): Quadrature encoder Encoder power supply in Pr. 3.36 = 5V (0), 8V (1) or 15V (2). If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0. Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device. Drive encoder Lines Per Revolution (LPR) in Pr 3.34 (set according to encoder) Drive encoder termination resistors disabled 1 = A-A B-B Z-Z\ termination resistors enabled, Z-Z\ termination resistors disabled 2 = A-A B-B Z-Z\ termination resistors enabled 	
Enter motor nameplate details	 Enter: Motor rated frequency in Pr 0.47 (Hz) Motor rated current in Pr 0.46 (A) Motor rated speed (base speed - slip speed) in Pr 0.45 (rpm) Motor rated voltage in Pr 0.44 (V) - check if 人 or △ connection 	
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.02
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	1000pm
	Unidrive SP is able to perform either a stationary or a rotating autotune. The motor must be at a standstill before an autotune is enabled. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive.	
	A rotating autotune will cause the motor to accelerate up to ${}^{2}_{l_{3}}$ base speed in the direction selected regardless of the reference provided. Once complete the motor will coast to a stop. The enable signal must be removed before the drive can be made to run at the required reference. WARNING The drive can be stopped at any time by removing the run signal or removing the drive enable.	∫ ∞s ∅
Autotune	 A stationary autotune can be used when the motor is loaded and it is not possible to uncouple the load from the motor shaft. The stationary autotune measures the stator resistance and transient inductance of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 0.38 and Pr 0.39 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. A rotating autotune should only be used if the motor is uncoupled. A rotating autotune first performs a stationary autotune before rotating the motor at 2/3 base speed in the direction selected. The rotating autotune measures the stator inductance of the motor and calculates the power factor. To perform an autotune: Set Pr 0.40 = 1 for a stationary autotune or set Pr 0.40 = 2 for a rotating autotune Close the Drive Enable signal (terminal 31). The drive will display 'rdY' Close the run signal (terminal 26 or 27). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive is performing the autotune. Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill 	R _s L _s T Nm Saturation break points N rpm
	Wait for the drive to display 'rdY' or 'inh' and for the motor to come to a standstill If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 242. Remove the drive enable and run signal from the drive. Enter 1000 in Pr xx.00	
Save parameters	Press the red low reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	•

Safety	Product	Mechanical	Electrical	Getting	Basic	Running	Optimization	SMARTCARD	Onboard	/ lavanoca	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Data	g	Information

7.3.4 Servo Permanent magnet motor with a speed and position feedback device For simplicity only an incremental quadrature encoder with commutation outputs will be considered here. For information on setting up one of the other supported speed feedback devices, refer to section 7.5 Setting up a feedback device on page 102.

Action	Detail	
Before power- up	 Ensure: Drive Enable signal is not given (terminal 31) Run signal is not given Motor is connected Feedback device is connected 	×
Power-up the drive	Ensure: • Drive displays 'inh' If the drive trips, see Chapter 13 <i>Diagnostics</i> on page 242.	
Set motor feedback parameters	 Incremental encoder basic set-up Enter: Drive encoder type in Pr. 3.38 = Ab.SErVO (3): Quadrature encoder with commutation outputs Encoder power supply in Pr. 3.36 = 5V (0), 8V (1) or 15V (2). NOTE If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0. Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device. CAUTION Setting the encoder voltage supply too high for the encoder could result in damage to the feedback device. Drive encoder Pulses Per Revolution in Pr. 3.34 (set according to encoder) Drive encoder termination resistor setting in Pr. 3.39: 0 = A-A B-B Z-Z\ termination resistors disabled 1 = A-A B-B termination resistors enabled, Z-Z\ termination resistors disabled 2 = A-A B-B Z-Z\ termination resistors enabled 	
Enter motor nameplate details	 Enter: Motor rated current in Pr 0.46 (A) Ensure that this equal to or less than the Heavy Duty rating of the drive otherwise It.AC trips may occur during the autotune. Number of poles in Pr 0.42 	A CONTRACT OF CONT
Set maximum speed	Enter: • Maximum speed in Pr 0.02 (rpm)	0.42
Set acceleration / deceleration rates	 Enter: Acceleration rate in Pr 0.03 (s/1000rpm) Deceleration rate in Pr 0.04 (s/1000rpm) (If braking resistor installed, set Pr 0.15 = FAST. Also ensure Pr 10.30 and Pr 10.31 are set correctly, otherwise premature 'It.br' trips may be seen.) 	1000pm
Autotune	 Unidrive SP is able to perform a short low speed, a normal low speed or a minimal movement autotune. The motor must be at a standstill before an autotune is enabled. A normal low speed autotune will measure the encoder phase offset angle and calculate the current gains. The short low speed and normal low speed tests will rotate the motor by up to 2 revolutions in the direction selected, regardless of the reference provided. The minimal movement test will move the motor through an angle defined by Pr 5.38. Once complete the motor will come to a standstill. The enable signal must be removed before the drive can be made to run at the required reference. The drive can be stopped at any time by removing the run signal or removing the Drive Enable. The motor must not be loaded when attempting an autotune. The short low speed and normal low speed tests will rotate the motor by up to 2 rotations in the direction selected and the drive measures the encoder phase angle and updates the value in Pr 3.25. The normal low speed test takes approximately 2s and the normal low speed test approximately 20s to complete. The minimal movement autotune will move the motor through an angle defined by Pr 5.38. The motor must not be loaded for this test although it will operate correctly when the load is an inertia. To perform an autotune: Set Pr 0.40 = 1 for a short low speed autotune, Pr 0.40 = 2 for a normal low speed test or Pr 0.40 = 5 for a minimal movement autotune. Close the run signal (terminal 26 or 27). Close the Drive Enable signal (terminal 31). The lower display will flash 'Auto' and 'tunE' alternatively, while the drive to signay 'rdy' or 'inh' and for the motor to come to a standstill. If the drive to display 'rdy' or 'inh' and for the motor to come to a standstill. Mait for the drive to display 'rdy' or 'inh' and for the motor to come to a standstill. 	
Save parameters	Enter 1000 in Pr xx.00 Press the red log reset button or toggle the reset digital input (ensure Pr xx.00 returns to 0)	
Run	Drive is now ready to run	*

ſ	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
						1				-	Provide the second			

7.4 Quick start commissioning/start-up (CTSoft)

CTSoft is a Windows™ based software commissioning/start-up tool for Unidrive SP and other Control Techniques products.

CTSoft can be used for commissioning/start-up and monitoring, drive parameters can be uploaded, downloaded and compared, and simple or custom menu listings can be created. Drive menus can be displayed in standard list format or as live block diagrams. CTSoft is able to communicate with a single drive or a network.

CTSoft can be found on the CD which is supplied with the drive and is also available for download from www.controltechniques.com (file size approximately 25MB).

CTSoft system requirements:

- Windows 2000/XP/Vista. Windows 95/98/98SE/ME/NT4 and Windows 2003 server are NOT supported
- Internet Explorer V5.0 or later must be installed
- Minimum of 800x600 screen resolution with 256 colors. 1024x768 is recommended.
- 128MB RAM
- · Pentium III 500MHz or better recommended.
- Adobe Acrobat Reader 5.1 or later (for parameter help). See CD provided
- Microsoft.Net Frameworks 2.0
- Note that you must have administrator rights to install CTSoft.

To install CTSoft from the CD, insert the CD and the auto-run facility should start up the front-end screen from which CTSoft can be selected. Any previous copy of CTSoft should be uninstalled before proceeding with the installation (existing projects will not be lost).

Included with CTSoft are the user guides for the supported drive models. When help on a particular parameter is request by the user, CTSoft links to the parameter in the relevant advanced user guide.

7.5 Setting up a feedback device

This section shows the parameter settings which must be made to use each of the compatible encoder types with Unidrive SP. For more information on the parameters listed here please refer to the *Unidrive SP Advanced User Guide*.

7.5.1 Overview

Table 7-3 Parameters required for feedback device set-up

	Parameter	Ab, Fd, Fr, Ab.SErVO, Fd.SErVO, Fr.SErVO, or SC encoders	SC.HiPEr encoder	SC.EndAt or SC.SSI encoders	EndAt encoder	SSI encoder
3.33	Drive encoder turns		√ x	√ x	√ x	\checkmark
3.34	Drive encoder lines per revolution	✓	√ x	√ x		
3.35	Drive encoder comms resolution		√ x	√ x	√ x	~
3.36	Drive encoder supply voltage*	\checkmark	\checkmark	✓	\checkmark	\checkmark
3.37	Drive encoder comms baud rate			√	\checkmark	\checkmark
3.38	Drive encoder type	\checkmark	\checkmark	✓	\checkmark	\checkmark
3.41	Drive encoder auto configuration enable or SSI binary format select		\checkmark	~	\checkmark	~

✓ Information required

x Parameter can be set-up automatically by the drive through auto-configuration

* Pr 3.36: If the output voltage from the encoder is >5V, then termination resistors must be disabled by setting Pr 3.39 to 0.

Table 7-3 shows a summary of the parameters required to set-up each feedback device. More detailed information follows.

Safety Information	Product	Mechanical Installation	Electrical	Getting	Basic	Running the motor	Optimization	SMARTCARD	Onboard	narameters	Technical Data	Diagnostics	UL Listing Information
mormation	information	Installation	Installation	Started	parameters	the motor		operation	PLC	parameters	Dala	-	mormation

7.5.2 Detailed feedback device commissioning/start-up information

Standard quadrature encoder w Sincos encoder without serial o		out commutation signals (A, B, Z or A, B, Z, U, V, W), or ions
Encoder type	Pr 3.38	 Ab (0) for a quadrature encoder without commutation signals * Ab.SErVO (3) for a quadrature encoder with commutation signals SC (6) for a Sincos encoder without serial communications *
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2) NOTE If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0
Encoder number of lines per revolution	Pr 3.34	Set to the number of lines or sine waves per revolution of the encoder. See section 7.5.3 <i>Restriction of encoder number of lines per revolution</i> on page 105 for restrictions on this parameter.
Encoder termination selection (Ab or Ab.SErVO only)	Pr 3.39	 0 = A, B, Z termination resistors disabled 1 = A, B termination resistors enabled and Z termination resistors disabled 2 = A, B, Z termination resistors enabled
Encoder error detection level	Pr 3.40	 0 = Error detection disable 1 = Wire break detection on A, B and Z inputs enabled 2 = Phase error detection (Ab.SErVO only) 3 = Wire break detection on A, B and Z inputs and phase error detection (Ab.SErVO only) Termination resistors must be enabled for wire break detection to operate

* These settings should only be used in closed loop vector mode, otherwise a phase offset test must be performed after every power up.

Incremental encoder with frequ Forward and Reverse (CW and		rection (F and D), or Ils, with or without commutation signals
Encoder type	Pr 3.38	 Fd (1) for frequency and direction signals without commutation signals * Fr (2) for forward and reverse signals without commutation signals * Fd.SErVO (4) for a frequency and direction encoder with commutation signals Fr.SErVO (5) for forward and reverse signals with commutation signals
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2) NOTE If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0
Encoder number of lines per revolution	Pr 3.34	Set to the number of pulses per revolution of the encoder divide by 2. See section 7.5.3 <i>Restriction of encoder number of lines per revolution</i> on page 105 for restrictions on this parameter.
Encoder termination selection	Pr 3.39	 0 = F or CW, D or CCW, Z termination resistors disabled 1 = F or CW, D or CCW termination resistors enabled and Z termination resistors disabled 2 = For CW, D or CCW, Z termination resistors enabled
Encoder error detection level	Pr 3.40	 0 = Error detection disable 1 = Wire break detection on F & D or CW & CCW, and Z inputs enabled 2 = Phase error detection (Fd.SErVO and Fr.SErVO only) 3 = Wire break detection on F & D or CW & CCW, and Z inputs and Phase error detection (Fd.SErVO and Fr.SErVO only) Termination resistors must be enabled for wire break detection to operate

* These settings should only be used in closed loop vector mode, otherwise a phase offset test must be performed after every power up.

Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimiza	tion SMARTCARD Onboard Advanced parameters Data Diagnostics UL Listing Information
---	--

The Unidrive SP is compatible with	the following H	Hiperface encoders:
SCS 60/70, SCM 60/70, SRS 50	0/60, SRM 50/	/60, SHS 170, LINCODER, SCS-KIT 101, SKS36, SKM36, SEK-53.
Encoder type	Pr 3.38	SC.HiPEr (7) for a Sincos encoder with Hiperface serial communications EndAt (8) for an EnDat communications only encoder SC.EndAt (9) for a Sincos encoder with EnDat serial communications
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2)
Encoder auto configure enable	Pr 3.41	Setting this to 1 automatically sets up the following parameters: Pr 3.33 Encoder turn bits Pr 3.34 Encoder number of lines of revolution (SC.HiPEr and SC.EndAt only) * Pr 3.35 Encoder single turn comms resolution Alternatively these parameters can be entered manually.
Encoder comms baud rate (EndAt and SC.EndAt only)	Pr 3.37	100 = 100k, 200 = 200k, 300 = 300k, 500 = 500k, 1000 = 1M, 1500 = 1.5M, or 2000 = 2M
Encoder error detection level (SC.HiPEr and SC.EndAt only)	Pr 3.40	 0 = Error detection disabled 1 = Wire break detection on Sin and Cos inputs 2 = Phase error detection 3 = Wire break detection on Sin and Cos inputs and phase error detection

* See section 7.5.3 Restriction of encoder number of lines per revolution on page 105 for restrictions on this parameter.

Absolute SSI communications only e Absolute Sincos encoder with SSI	encoder, o	r				
Encoder type	Pr 3.38	SSI (10) for a SSI communications only encoder SC.SSI (11) for a Sincos encoder with SSI				
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2)				
Encoder number of lines per revolution. (SC.SSI only) Pr 3.34		et to the number of sine waves per revolution of the encoder. ee section 7.5.3 <i>Restriction of encoder number of lines per revolution</i> on page 105 for estrictions on this parameter.				
SSI binary format select	Pr 3.41	DFF (0) for gray code, or On (1) for binary format SSI encoders				
Encoder turn bits	Pr 3.33	Set to the number of turn bits for the encoder (this is usually 12bits for a SSI encoder)				
Encoder single turn comms resolution	Pr 3.35	Set to the single turn comms resolution for the encoder (this is usually 13bits for a SSI encoder)				
Encoder comms baud rate	Pr 3.37	100 = 100k, 200 = 200k, 300 = 300k, 500 = 500k, 1000 = 1M, 1500 = 1.5M, or 2000 = 2M				
Encoder error detection level	Pr 3.40	 0 = Error detection disabled 1 = Wire break detection on Sin and Cos inputs (SC.SSI only) 2 = Phase error detection (SC.SSI only) 3 = Wire break detection and phase error detection (SC.SSI only) 4 = SSI power supply bit monitor 5 = SSI power supply bit monitor and wire break detection (SC.SSI only) 6 = SSI power supply bit monitor and phase error detection (SC.SSI only) 7 = SSI power supply bit monitor, wire break detection and phase error detection (SC.SSI only) 				

UVW commutation signal only enco	ders*	
Encoder type	Pr 3.38	Ab.servo
Encoder power supply voltage	Pr 3.36	5V (0), 8V (1) or 15V (2)
Encoder number of lines per revolution	Pr 3.34	Set to zero
Encoder error detection level	Pr 3.40	Set to zero to disable wire break detection

* This feedback device provides very low resolution feedback and should not be used for applications requiring a high level of performance.

		Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

7.5.3 Restriction of encoder number of lines per revolution

Although Pr **3.34** can be set to any value from 0 to 50,000 there are restrictions on the values actually used by the drive. These restrictions are dependent on the software version as follows:

Software version V01.06.01 and later

Table 7-4 Restrictions of drive encoder lines per revolution with software version V01.06.01 and later

Position feedback device	Equivalent Lines per revolution used by the drive
Ab, Fd, Fr, Ab.SErVO, Fd.SErVO, Fr.SerVO, SC	The drive uses the value in Pr 3.34 .
SC.HiPEr, SC.EndAt, SC.SSI (rotary encoders)	If Pr $3.34 \le 1$, the drive uses the value of 1. If 1< Pr $3.34 < 32,768$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 32,768$, the drive uses the value of 32,768.
SC.HiPEr, SC.EndAt, SC.SSI (linear encoders	The drive uses the value in Pr 3.34 .

Software version V01.06.00 and earlier

Table 7-5 Restrictions of drive encoder lines per revolution with software version V01.06.00 and earlier

Position feedback device	Equivalent Lines per revolution used by the drive
Ab, Fd, Fr	If Pr 3.34 <2, the drive uses the value of 2. If $2 \le Pr$ 3.34 . $\le 16,384$, the drive uses the value in Pr 3.34 . If Pr 3.34 >16,384, the drive uses the value in Pr 3.34 rounded down to nearest value divisible by 4.
Ab.SErVO, Fd.SErVO, Fr.SErVO	If Pr $3.34 \le 2$, the drive uses the value of 2. If 2< Pr $3.34 < 16,384$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 16,384$, the drive uses the value of 16,384.
SC, SC.HiPEr, SC.EndAt, SC.SSI	If Pr $3.34 \le 2$, the drive uses the value of 2. If 2< Pr $3.34 < 32,768$, the drive uses the value in Pr 3.34 rounded down to nearest value that is a power of 2. If Pr $3.34 \ge 32,768$, the drive uses the value of 32,768.

At power-up Pr **3.48** is initially zero, but is set to one when the drive encoder and any encoders connected to any Solutions Modules have been initialized. The drive cannot be enabled until this parameter is one.

Encoder initialisation will occur as follows:

- At drive power-up
- When requested by the user via Pr 3.47
- When trips PS.24V, Enc1 to Enc8, or Enc11 to Enc17 trips are reset
- The encoder number of lines per revolution (Pr 3.34) or the number of motor poles (Pr 5.11 and Pr 21.11) are changed (software version V01.08.00 and later).

Initialization causes an encoder with communications to be re-initialized and auto-configuration to be performed if selected. After initial is at ion Ab.SErVO, Fd.SErVO and Fr.SErVO encoders will use the UVW commutations signals to give position feedback for the first 120° (electrical) of rotation when the motor is restarted.

Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Runningthe motor Optimization	n SMARTCARD Onboard Advanced Technical Data Diagnostics UL Listing Information
--	--

8 Optimization

This chapter takes the user through methods of optimizing the product set-up, maximizing performance. The auto-tuning features of the drive simplify this task.

8.1 Motor map parameters

8.1.1 Open loop motor control

Pr 0.46 {5.07} Motor rated current	Defines the maximum continuous motor current
 The motor rated current parameter must be set to the maximum continuous of page 116, for information about setting this parameter higher then the maximus. Current limits (see section 8.3 <i>Current limits</i> on page 116, for more in Motor thermal overload protection (see section 8.4 <i>Motor thermal proc</i>. Vector mode voltage control (see Voltage mode Pr 0.07, later in this table). Slip compensation (see Slip compensation Pr 5.27, later in this table). Dynamic V/F control 	um Heavy Duty current rating.) The motor rated current is used in the following: nformation) <i>otection</i> on page 116, for more information) table)
Pr 0.44 {5.09} Motor rated voltage	Defines the voltage applied to the motor at rated frequency
Pr 0.47 {5.06} Motor rated frequency	Defines the frequency at which rated voltage is applied
The motor rated voltage Pr 0.44 and the motor rated frequency Pr 0.47 are used to define the voltage to frequency characteristic applied to the motor (see voltage mode Pr 0.07 , later in this table). The motor rated frequency is also used in conjunction with the motor rated speed to calculate the rated slip for slip compensation (see motor rated speed Pr 0.45 , later in this table).	Output voltage characteristic Pr 0.44 / 2 Pr 0.44 / 2 Pr 0.47 / 2 Pr 0.47 Output requency
Pr 0.45 {5.08} Motor rated speed	Defines the full load rated speed of the motor
Pr 0.42 {5.11} Motor number of poles	Defines the number of motor poles
The motor rated speed and the number of poles are used with the motor	rated frequency to calculate the rated slip of induction machines in Hz.
Rated slip (Hz) = Motor rated frequency - (Number of pole pairs x [M	otor rated speed / 601) = $0.47 - \left(\frac{0.42}{2} \times \frac{0.45}{2}\right)$
If Pr 0.45 is set to 0 or to synchronous speed, slip compensation is disab	
nameplate value, which should give the correct rpm for a hot machine. So because the nameplate value may be inaccurate. Slip compensation will region. Slip compensation is normally used to correct for the motor speed than synchronous speed to deliberately introduce speed droop. This can	ometimes it will be necessary to adjust this when the drive is commissioned operate correctly both below base speed and within the field-weakening to prevent speed variation with load. The rated load rpm can be set higher be useful to aid load sharing with mechanically coupled motors. rive for a given output frequency. When Pr 0.42 is set to 'Auto', the number
Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rate	
Pr 0.43 {5.10} Motor rated power factor	Defines the angle between the motor voltage and current
	een the motor voltage and current. The power factor is used in conjunction
with the motor rated current Pr 0.46, to calculate the rated active current extensively to control the drive, and the magnetising current is used in vertices of the drive of	and magnetising current of the motor. The rated active current is used
Pr 0.40 {5.12} Autotune	
 the measured value of power factor of the motor is used by the drive. A stationary autotune can be used when the motor is loaded and it is measures the stator resistance (Pr 5.17) and voltage offset (Pr 5.23), Voltage mode Pr 0.07, later in this table). The stationary autotune do nameplate must be entered into Pr 0.43. To perform a Stationary autotuce terminal 31) and a run signal (on terminal 26 or 27). 	In a rotating test. A rotating autotune should be used whenever possible so a not possible to remove the load from the motor shaft. The stationary test which are required for good performance in vector control modes (see es not measure the power factor of the motor so the value on the motor otune, set Pr 0.40 to 1, and provide the drive with both an enable signal (on
motor at 2 / ₃ base speed in the direction selected for several seconds (re	ibit state. The drive must be placed into a controlled disable condition can be put in to a controlled disable condition by removing the SAFE

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Pr 0.07 {5.14} Voltage mode

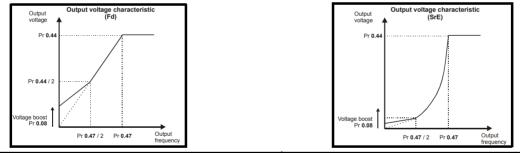
There are six voltage modes available which fall into two categories, vector control and fixed boost.

Vector control

Vector control mode provides the motor with a linear voltage characteristic from 0Hz to motor rated frequency (Pr **0.47**), and then a constant voltage above motor rated frequency. When the drive operates between motor rated frequency/50 and motor rated frequency/4, full vector based stator resistance compensation is applied. When the drive operates between motor rated frequency/4 and motor rated frequency/2 the stator resistance compensation is gradually reduced to zero as the frequency increases. For the vector modes to operate correctly the motor rated power factor (Pr **0.43**), stator resistance (Pr **5.17**) and voltage offset (Pr **5.23**) are all required to be set up accurately. The drive can be made to measure these by performing an autotune (see Pr **0.40** Autotune). The drive can also be made to measure the stator resistance and voltage offset automatically every time the drive is enabled or the first time the drive is enabled after it is powered up, by selecting one of the vector control voltage modes.

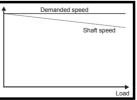
(0) Ur_S = The stator resistance and the voltage offset are measured and the parameters for the selected motor map are over-written each time the drive is made to run. This test can only be done with a stationary motor where the flux has decayed to zero. Therefore this mode should only be used if the motor is guaranteed to be stationary each time the drive is made to run. To prevent the test from being done before the flux has decayed there is a period of 1 second after the drive has been in the ready state during which the test is not done if the drive is made to run again. In this case, previously measured values are used. Ur_s mode ensures that the drive compensates for any change in motor parameters due to changes in temperature. The new values of stator resistance and voltage offset are not automatically saved to the drive's EEPROM.
(4) Ur_I = The stator resistance and voltage offset are measured when the drive is first made to run after each power-up. This test can only be done with a stationary motor. Therefore this mode should only be used if the motor is guaranteed to be stationary the first time the drive is made to run after each power-up. The new values of stator resistance and voltage offset are not automatically saved to the drive's EEPROM.
(1) Ur = The stator resistance and voltage offset are not measured. The user can enter the motor and cabling resistance into the stator resistance parameter (Pr 5.17). However this will not include resistance effects within the drive inverter. Therefore if this mode is to be used, it is best to use an autotune test initially to measure the stator resistance and voltage offset.

(3) **Ur_Auto=** The stator resistance and voltage offset are measured once, the first time the drive is made to run. After the test has been completed successfully the voltage mode (Pr 0.07) is changed to Ur mode. The stator resistance (Pr 5.17) and voltage offset (Pr 5.23) parameters are written to, and along with the voltage mode (Pr 0.07), are saved in the drive's EEPROM. If the test fails, the voltage mode will stay set to Ur_Auto and the test will be repeated next time the drive is made to run.


Fixed boost

Neither the stator resistance nor the voltage offset are used in the control of the motor, instead a fixed characteristic with low frequency voltage boost as defined by parameter Pr **0.08**, is used. Fixed boost mode should be used when the drive is controlling multiple motors. There are two settings of fixed boost available:

(2) Fd = This mode provides the motor with a linear voltage characteristic from 0Hz to rated frequency (Pr 0.47), and then a constant voltage above rated frequency.


(5) **SrE** = This mode provides the motor with a square law voltage characteristic from 0Hz to rated frequency (Pr **0.47**), and then a constant voltage above rated frequency. This mode is suitable for variable torque applications like fans and pumps where the load is proportional to the square of the speed of the motor shaft. This mode should not be used if a high starting torque is required.

For both these modes, at low frequencies (from 0Hz to ½ x Pr 0.47) a voltage boost is applied defined by Pr 0.08 as shown below:

Pr 5.27 Slip compensation

When a motor, being controlled in open loop mode, has load applied a characteristic of the motor is that the output speed droops in proportion to the load applied as shown:

In order to prevent the speed droop shown above slip compensation should be enabled.

To enable slip compensation Pr **5.27** must be set to a 1 (this is the default setting), and the motor rated speed must be entered in Pr **0.45** (Pr **5.08**). The motor rated speed parameter should be set to the synchronous speed of the motor minus the slip speed. This is normally displayed on the motor nameplate, i.e. for a typical 18.5kW, 50Hz, 4 pole motor, the motor rated speed would be approximately 1465rpm. The synchronous speed for a 50Hz, 4 pole motor is 1500rpm, so therefore the slip speed would be 35rpm.

If the synchronous speed is entered in Pr 0.45, slip compensation will be disabled. If too small a value is entered in Pr 0.45, the motor will run faster than the demanded frequency.

The synchronous speeds for 50Hz motors with different numbers of poles are as follows:

2 pole = 3000rpm, 4 pole = 1500rpm, 6pole =1000rpm, 8 pole = 750rpm

Safety Product Mechanical Electrical Getting Basic Running the	SMARTCARD Onboard	Advanced Technical parameters Data	Diagnostics UL Listin
motor Optimization Optimization State	operation PLC		Informatio

8.1.2 RFC mode

Software V01.10.00 or later should be used for RFC mode.

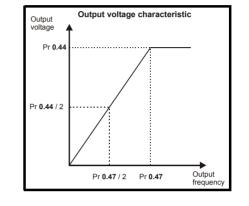
Pr 0.46 {5.07} Motor rated current

Defines the maximum motor continuous current

The motor rated current parameter must be set to the maximum continuous current of the motor. (See section 8.2 *Maximum motor rated current* on page 116, for information about setting this parameter higher than the maximum Heavy Duty current rating.) The motor rated current is used in the following:

- Current limits (see section 8.3 Current limits on page 116, for more information)
- Motor thermal overload protection (see section 8.4 Motor thermal protection on page 116, for more information)
- Vector control algorithm

Defines the voltage applied to the motor at rated frequency Defines the frequency at which rated voltage is applied


Pr 0.47 {5.06} Motor rated frequency

Pr 0.44 {5.09} Motor rated voltage

The motor rated voltage Pr **0.44** and the motor rated frequency Pr **0.47** are used to define the relationship between the voltage and frequency applied to the motor, as shown.

The motor rated voltage is used by the field controller to limit the voltage applied to the motor. Normally this is set to the nameplate value. To allow current control to be maintained, it is necessary for the drive to leave some 'headroom' between the motor terminal voltage and the maximum available drive output voltage. For good transient performance at high speed, the motor rated voltage should be set below 95% of the minimum supply voltage to the drive.

The motor rated voltage and motor rated frequency are also used during the rotating autotune test (see Autotune Pr **0.40** later in this table) and in the calculations required for automatic optimization of the motor rated speed (see Motor rated speed optimization Pr **5.16**, later in this table). Therefore, it is important that the correct value for motor rated voltage is used.

Pr 0.45 {5.08} Motor rated speed

Pr 0.42 {5.11} Motor number of poles

Defines the number of motor poles

The motor rated speed and motor rated frequency are used to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter has the following effects:

- · Reduced efficiency of motor operation
- · Reduction of maximum torque available from the motor
- Reduced transient performance
- Inaccurate control of absolute torque in torque control modes

The nameplate value is normally the value for a hot motor; however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate. Either a fixed value can be entered in this parameter or an optimization system may be used to automatically adjust this parameter (see Motor rated speed autotune Pr **5.16**, later in this table).

When Pr 0.42 is set to 'Auto', the number of motor poles is automatically calculated from the motor rated frequency Pr 0.47, and the motor rated speed Pr 0.45

Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rated speed Pr 0.45) rounded to the nearest even number

Pr 0.43 {5.10} Motor rated power factor Defines the angle between the motor voltage and current

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. If the stator inductance is set to zero (Pr **5.25**) then the power factor is used in conjunction with the motor rated current Pr **0.46** and other motor parameters to calculate the rated active and magnetising currents of the motor, which are used in the vector control algorithm. If the stator inductance has a non-zero value this parameter is not used by the drive, but is continuously written with a calculated value of power factor. The stator inductance can be measured by the drive by performing a rotating autotune (see Autotune Pr **0.40**, later in this table).

	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARI operation	O Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing
Pr 0.40 {5.	12} Autotı	une							I				1
give mode	rate perforr	mance whe	reas a rota	ting auto	tune will g	jive improv	ed perform	est and an ir nance as it m to a stationa	easures th	ne actual va	alues of t	•	
NOTE			rotating aut										
autotui gains, motor : drive w • A rotat motor : and the but is r 0.40 to • The ine gains) During to stan progre is initia to Pr 3 To perf (on ter Following to before the TORQUE	The measure and at the so the valu with both an ing autotur at ${}^{2}/_{3}$ of mote motor sat not used aff 2, and pro- ertia measu and to pro- the inertia dstill. The of ssively to x ted. If the t .18. The m form an Ine minal 26 or he comple drive can to DFF (SECU	es the state end of the f e on the main neable sig- ne should o tor rated fre- uration bre- ter this poir ovide the dr urement test vide torque measurem drive uses if $x^{1}/_{8}$, $x^{1}/_{4}$, $x^{1}/_{2}$, est is succ- otor map p ortia measur r 27). tion of an a be made to JRE DISAE	or resistance test the value otor namep gnal (on tern nly be used equency in the akpoints (P at as the stative with boots feed-forwate rated torque and x1 rate restful the a arameters rement autor utotune test run at the r BLE) signal	e (Pr 5.1 ues in Pr late mus minal 31) d if the m the direct ir 5.29 ar ator induc th an ena- sure the f irds when e drive att e/16, but ted torqu accelerati must be otune, se st the driv- required	7) and trai 4.13 and 4.13 and at be enter otor is unl tion select ad Pr 5.30) ctance is u able signal total inertia in required tempts to a if the mot e. If the re on and de set up cor at Pr 0.40 t ve will go i reference.	nsient indu Pr 4.14 are ed into Pr (n signal (or oaded. A n ed for appr are modifi used in the l (on termir a of the loa during acc accelerate or cannot t equired spe cecleration rectly inclu o 3, and pr nto the inh The drive	ctance (Pr e updated. 0.43 . To pe terminal 2 otating auto oximately 3 ed by the c vector con al 31) and d and the r eleration. the motor i be accelerated is not a times are u ding the po- ovide the d bit state. T can be put	ble to remove 5.24) of the in A stationary rform a Station 26 or 27). otune first per 30s. During the drive. The por- torol algorithm a run signal motor. This is a run signal motor. This is a run signal motor. This is a run signal torol algorithm a run signal motor. This is a run sis a run signal motor. This is a run signal motor. This is	motor. The autotune of onary auto erforms a sine rotating wer factor in instead. (on termin s used to sing on selected quired spectro he final att late the m efore perfe- h an enablic st be place olled disa	ese are use does not m otune, set F stationary a a autotune t is also moo To perform hal 26 or 27 set the spee d up to ${}^{3}\!/_{4}$ x eed the driv tempt the te otor and los orming an i le signal (o bel conditio	ed to calce easure the Pr 0.40 to utotune to he stator dified for u a Rotatin 7). ed loop ga rated loa ve then in est is abo ad inertia nertia me n termina ontrolled co on by rem	ulate the c ne power fa 1, and pro- pefore rota inductance user inform ng autotun ains (see S ad rpm and preases the rted and a which is the easurement al 31) and a disable cor poving the	urrent loop actor of the ovide the ting the e (Pr 5.25) nation only e, set Pr Speed loop I then back the torque tunE1 trip hen writter t test. a run signa adition SAFE
		& Pr 6.43).		nomiten	illindi 51, s	setting the	unve enab	le parameter	FI 0.15 U		i usadili		e via lite
The curren default vali change the for the curr • During transie • By sett (Pr 5.2 This will gir of 1.5 givin gain gives	t loop gaina ues give sa gains to ir rent loop ga a stational nt inductar ting Pr 0.40 4) set in th ve a step re g a similar a conserva	s proportion mprove the ains can be ry or rotatin nce (Pr 5.2 4 0 to 4 the di e drive. esponse wi increase in ative value.	pperation w performan calculated g autotune f) of the mo rive will calc th minimun bandwidth In some ap	d integral ith most ce. The p by one of (see Au otor and of culate the n oversho ; howeve	motors. He proportion. of the follo totune Pr calculates e current le pot after a er, this give is where it	owever, for al gain (Pr wing: 0.40, earlie the curren oop gains f step chang es a step re : is necessa	optimal pe 4.13) is the r in this tab t loop gains rom the va ge of curren sponse wi ary for the	of the currer erformance ir e most critica ole) the drive s. alues of stato nt reference. th approxima reference fra y need to ha	n dynamic I value in measures r resistanc The propo ttely 12.5% me used I	applicatior controlling s the stator ce (Pr 5.17) ortional gain 6 overshoo by the drive	ns it may the perfo resistand and tran n can be t. The eq to dynar	be necess rmance. T ce (Pr 5.17 usient induc increased uation for f mically follo	ary to he values ') and ctance by a factor the integra
	ive encode												
								used as the s I as follows:	peed feed	lback. A filt	er with a	4ms time	constant is
The output remove thi	of the spe s ripple. Th	ed estimato		de some I when u	ripple, wł	nich increa		drive passes start with a I		-			
	in start bo	ost											

Information Installation Installation Started parameters motor Chamber operation PLC parameters Data Disgression Information	Safety Information	Product information	Mechanical Installation		3		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	--	---	--	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr **3.16**. If Pr **3.16** = 0, gains Kp1, Ki1 and Kd1 (Pr **0.07** to Pr **0.09**) are used, and if Pr **3.16** = 1, gains Kp2, Ki2 and Kd2 (Pr **3.13** to Pr **3.15**) are used. Pr **3.16** may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr **3.17**.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the stability limit is reached.

Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application. For RFC mode, it is unlikely that the integral gain can be increased much above 0.50.

Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr 3.17 = 0, User set-up.

This involves the connecting of an oscilloscope to analog output 1 to monitor the speed feedback.

Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope.

The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly.

The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly.

It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown.

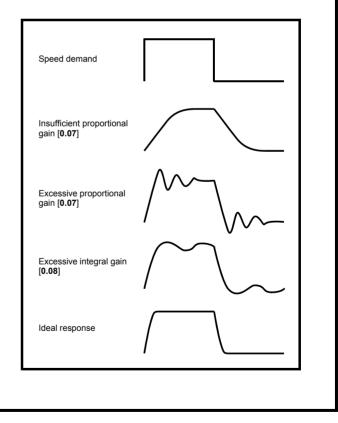
The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

2. Pr 3.17 = 1, Bandwidth set-up

If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.20 Required bandwidth,
- Pr 3.21 Required damping factor,

Pr **3.18** - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).


3. Pr 3.17 = 2, Compliance angle set-up

If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

Pr 3.19 - Required compliance angle,

Pr 3.21 - Required damping factor,

Pr **3.18** - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

Safety Product Mechanical Electrical Getting Basic Running the motor Optimization Information information Installation Installation Started parameters motor Optimization	SMARTCARD Onboard Advanced Technical Diagnostics UL Listing Information
---	---

8.1.3 Closed loop vector motor control

Pr 0.46 {5.07} Motor rated current Defines the maximum motor continuous current The motor rated current parameter must be set to the maximum continuous current of the motor. (See section 8.2 Maximum motor rated current on page 116, for information about setting this parameter higher than the maximum Heavy Duty current rating.) The motor rated current is used in the followina: Current limits (see section 8.3 Current limits on page 116, for more information) Motor thermal overload protection (see section 8.4 Motor thermal protection on page 116, for more information) Vector control algorithm Pr 0.44 {5.09} Motor rated voltage Defines the voltage applied to the motor at rated frequency Pr 0.47 {5.06} Motor rated frequency Defines the frequency at which rated voltage is applied The motor rated voltage Pr 0.44 and the motor rated frequency Pr 0.47 Output voltage characteristic are used to define the relationship between the voltage and frequency Output , oltage applied to the motor, as shown. The motor rated voltage is used by the field controller to limit the voltage Pr 0.44 applied to the motor. Normally this is set to the nameplate value. To allow current control to be maintained, it is necessary for the drive to leave some 'headroom' between the motor terminal voltage and the maximum available drive output voltage. For good transient performance at high Pr 0.44 / 2 speed, the motor rated voltage should be set below 95% of the minimum supply voltage to the drive. The motor rated voltage and motor rated frequency are also used during the rotating autotune test (see Autotune Pr 0.40 later in this table) and in the calculations required for automatic optimization of the motor rated Output frequer Pr 0.47 / 2 Pr 0 47 speed (see Motor rated speed optimization Pr 5.16, later in this table). Therefore, it is important that the correct value for motor rated voltage is used. Pr 0.45 {5.08} Motor rated speed Defines the full load rated speed of the motor Pr 0.42 {5.11} Motor number of poles Defines the number of motor poles The motor rated speed and motor rated frequency are used to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter has the following effects: Reduced efficiency of motor operation Reduction of maximum torque available from the motor Reduced transient performance Inaccurate control of absolute torque in torque control modes The nameplate value is normally the value for a hot motor; however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate. Either a fixed value can be entered in this parameter or an optimization system may be used to automatically adjust this parameter (see Motor rated speed autotune Pr 5.16, later in this table). When Pr 0.42 is set to 'Auto', the number of motor poles is automatically calculated from the motor rated frequency Pr 0.47, and the motor rated speed Pr 0.45 Number of poles = 120 x (Motor rated frequency Pr 0.47 / Motor rated speed Pr 0.45) rounded to the nearest even number Pr 0.43 {5.10} Motor rated power factor Defines the angle between the motor voltage and current The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. If the stator inductance is set to zero (Pr

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. If the stator inductance is set to zero (Pr **5.25**) then the power factor is used in conjunction with the motor rated current Pr **0.46** and other motor parameters to calculate the rated active and magnetising currents of the motor, which are used in the vector control algorithm. If the stator inductance has a non-zero value this parameter is not used by the drive, but is continuously written with a calculated value of power factor. The stator inductance can be measured by the drive by performing a rotating autotune (see Autotune Pr **0.40**, later in this table).

Diagnostics	Safety Information				0		5.0	Optimization	SMARTCARD operation	DI C			Diagnostics	UL Listing Information
-------------	-----------------------	--	--	--	---	--	-----	--------------	---------------------	------	--	--	-------------	---------------------------

Pr 0.40 {5.12} Autotune

There are three autotune tests available in closed loop vector mode, a stationary test, a rotating test and an inertia measurement test. A stationary autotune will give moderate performance whereas a rotating autotune will give improved performance as it measures the actual values of the motor parameters required by the drive. An inertia measurement test should be performed separately to a stationary or rotating autotune.

- A stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft. The stationary autotune measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor. These are used to calculate the current loop gains, and at the end of the test the values in Pr 4.13 and Pr 4.14 are updated. A stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 0.43. To perform a Stationary autotune, set Pr 0.40 to 1, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune before rotating the motor at 2/3 of motor rated frequency in the direction selected for approximately 30s. During the rotating autotune the stator inductance (Pr 5.25), and the motor saturation breakpoints (Pr 5.29 and Pr 5.30) are modified by the drive. The power factor is also modified for user information only, but is not used after this point as the stator inductance is used in the vector control algorithm instead. To perform a Rotating autotune, set Pr 0.40 to 2, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).
- The inertia measurement test can measure the total inertia of the load and the motor. This is used to set the speed loop gains (see Speed loop gains) and to provide torque feed-forwards when required during acceleration.

During the inertia measurement test the drive attempts to accelerate the motor in the direction selected up to ${}^{3}{}_{4}$ x rated load rpm and then back to standstill. The drive uses rated torque/16, but if the motor cannot be accelerated to the required speed the drive then increases the torque progressively to $x^{1}{}_{8}$, $x^{1}{}_{4}$, $x^{1}{}_{2}$ and x1 rated torque. If the required speed is not achieved on the final attempt the test is aborted and a tunE1 trip is initiated. If the test is successful the acceleration and deceleration times are used to calculate the motor and load inertia which is then written to Pr **3.18**. The motor map parameters must be set up correctly including the power factor before performing an inertia measurement test. To perform an Inertia measurement autotune, set Pr **0.40** to 3, and provide the drive with both an enable signal (on terminal 31) and a run signal (on terminal 26 or 27).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the SAFE TORQUE OFF (SECURE DISABLE) signal from terminal 31, setting the drive enable parameter Pr **6.15** to OFF (0) or disabling the drive via the control word (Pr **6.42** & Pr **6.43**).

Pr 5.16 Motor rated speed autotune

The motor rated speed parameter (Pr **0.45**) in conjunction with the motor rated frequency parameter (Pr **0.47**) defines the full load slip of the motor. The slip is used in the motor model for closed-loop vector control. The full load slip of the motor varies with rotor resistance which can vary significantly with motor temperature. When Pr **5.16** is set to 1 or 2 the drive can automatically sense if the value of slip defined by Pr **0.47** and Pr **0.45** has been set incorrectly or if it has varied with motor temperature. If the value is incorrect Pr **0.45** is automatically adjusted. Pr **0.45** is not saved at power-down, and so when the drive is powered-down and up again it will return to the last saved value. If the new value is required at the next power-up it must be saved by the user. Automatic optimization is only enabled when the speed is above rated speed/8, and when the load on the motor load rises above ${}^{5}_{l_8}$ rated load. Optimization is disabled again if the load falls below ${}^{1}_{l_2}$ rated load. For best optimization results the correct values of stator resistance (Pr **5.17**), transient inductance (Pr **5.24**), stator inductance (Pr **5.25**) and saturation breakpoints (Pr **5.29**, Pr **5.30**) should be stored in the relevant parameters (all these can be measured by the drive by performing a rotating autotune). Motor rated speed autotune is not available if the drive is not using external position/speed feedback.

The gain of the optimizer, and hence the speed with which it converges, can be set at a normal low level when Pr **5.16** is set to 1. If this parameter is set to 2, the gain is increased by a factor of 16 to give faster convergence.

Pr 0.38 {4.13} / Pr 0.39 {4.14} Current loop gains

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by one of the following:

- During a stationary or rotating autotune (see Autotune Pr 0.40, earlier in this table) the drive measures the stator resistance (Pr 5.17) and transient inductance (Pr 5.24) of the motor and calculates the current loop gains.
- By setting Pr 0.40 to 4 the drive will calculate the current loop gains from the values of stator resistance (Pr 5.17) and transient inductance (Pr 5.24) set in the drive.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives a step response with approximately 12.5% overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed closed-loop induction motor applications) the integral gain may need to have a significantly higher value.

Obtimization Optimization Optimization Optimization Optimization	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor Opti	otimization		Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	------------------------	-------------	--	----------------	---------------------	-------------------	-------------	---------------------------

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr **3.16**. If Pr **3.16** = 0, gains Kp1, Ki1 and Kd1 (Pr **0.07** to Pr **0.09**) are used, and if Pr **3.16** = 1, gains Kp2, Ki2 and Kd2 (Pr **3.13** to Pr **3.15**) are used. Pr **3.16** may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr **3.17**.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the closed-loop stability limit is reached.

Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr 3.17 = 0, User set-up.

This involves the connecting of an oscilloscope to analog output 1 to monitor the speed feedback. Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope.

The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly.

The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly.

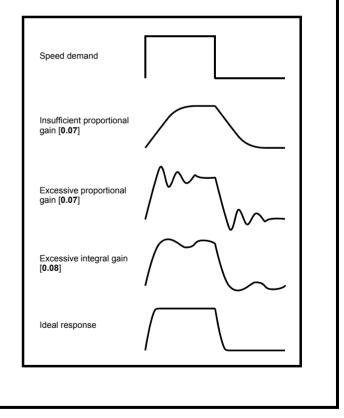
It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown.

The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

2. Pr 3.17 = 1, Bandwidth set-up

If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.20 Required bandwidth,
- Pr 3.21 Required damping factor,


Pr **3.18** - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

3. Pr 3.17 = 2, Compliance angle set-up

If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

- Pr 3.19 Required compliance angle,
- Pr 3.21 Required damping factor,

Pr **3.18** - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr **0.40**, earlier in this table).

Safety	Draduat	Mechanical	Electrical	Cotting	Paoia	Dupping the		SMARTCARD	Onboard	Advanced	Technical		UL Listing
Information	Product information	Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
8.1.4 \$	Servo mo	otor cont	trol										
		rated curr						he maximum					
			ter must be .3 <i>Current l</i>					of the motor.	The moto	or rated cur	rent is us	sed in the fo	ollowing:
				section	8.4 Motor	thermal pro		page 116, for					
		number of		les the n	umber of e	lectrical re		he number o		-	of the m	otor This r	arameter
								set to "Auto"					Jarameter
	12} Autotu												
								al low speed t w speed shou					
the stator	esistance a	and inducta	ance of the	motor, a	nd from th	ese calcula	tes the cur	rent loop gain					
	•		low speed of the the mo		•			mechanical re	volutions) in the dire	ection sel	ected. The	drive
								e angle (Pr 3. : he motor whei					
This te	st takes ap	proximately	2 seconds	to comp	lete and ca	an only be ι	ised where	the rotor settle	es to a st	able positio	on in a sh	ort time. To	perform a
								ole signal (on t nechanical rev					
			-			•	- ·	Pr 3.25). The p ien it is at rest		-			
resista	nce (Pr 5.1	7) and induc	ctance (Pr 5	.24) are	then meas	ured, and th	e values ar	e used to set u	p the curi	rent loop ga	ains (Pr 0 .	38 {4.13 } ai	nd Pr 0.39
• • •			•••	•				ors that take tir roduces flux th					-
								kely to affect the ower level for the ower level fo					
								on terminal 31					
								notor. This is u	used to s	et the spee	ed loop ga	ains (see S	peed loop
			feed-forwa			-		e direction sele	ected up to	o ³ /₄ x rateo	d load ron	n and then b	ack to
stands	till. The drive	e uses rateo	d torque/16,	but if the	motor can	not be acce	lerated to th	e required spe	ed the dr	ive then inc	reases th	e torque pro	gressively
-								al attempt the r and load iner					
value o	of motor torc	que per amp	o in Pr 5.32	and the r	notor rated	speed in P	r 5.08 must	be set up corr	ectly befo	ore performi	ing an ine	rtia measure	ement test
	form an Ine minal 26 or		rement auto	otune, se	et Pr 0.40 t	o 3, and pro	ovide the d	rive with both	an enabl	e signal (or	n termina	l 31) and a	run signal
	,	•		•				nce and the tr					
perform	ned when t	the correct	phasing an	gle has	been set ir	n Pr 0.43 . If	the phasin	not measure t g angle is not	correct t	he motor n	nay move	and the re	sults may
	•		ationary tes I (on termir		•	controller g	ains, set P	r 0.40 to 4, an	d provide	e the drive	with both	an enable	signal (on
A mini	mal mover	nent phasin	ig test can i	measure	the encod			oving the moto					
		•						back to the ori	• •			•	•
								rform a minim n terminal 26		ment phasi	ng test, s	et Pr 0.40 t	o 5, and
Following the	ne completio	on of an auto	otune test th	e drive w	vill go into th	ne inhibit sta	te. The driv	e must be plac	ed into a				
								ble condition b or disabling th					
Current lo	op gains (Pr 0.38 {4.	13} / Pr 0.3	39 {4.14]	-)								
								of the current					
change the	e gains to ir	mprove the	performan	ce. The	proportion	al gain (Pr		most critical					
			calculated			•	r in this tab	le) the drive n	neasures	the stator	resistanc	e (Pr 5.17)	and
			4) of the mo						rociotono	o (Dr E 17)	and tran	aiant indua	tanaa
(Pr 5.2	4) set in th	e drive.						ues of stator i					
								t reference. T h approximate					
gain gives	a conserva	ative value.	In some ap	oplication	ns where it	is necessa	ary for the r	eference fram	ne used b	y the drive	to dynar	nically follo	•
very close	y (i.e. nigh	speed CIOS	eu-ioop inc		iotor appli	cauons) ine	antegrai g	ain may need	to nave a	a siynincar	iay nigne	i vaiue.	

Obtimization Optimization Optimization Optimization Optimization	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor Opti	otimization		Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	------------------------	-------------	--	----------------	---------------------	-------------------	-------------	---------------------------

Speed loop gains (Pr 0.07 {3.10}, Pr 0.08 {3.11}, Pr 0.09 {3.12})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr 3.16. If Pr 3.16 = 0, gains Kp1, Ki1 and Kd1 (Pr 0.07 to Pr 0.09) are used, and if Pr 3.16 = 1, gains Kp2, Ki2 and Kd2 (Pr 3.13 to Pr 3.15) are used. Pr 3.16 may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr 3.17.

Proportional gain (Kp), Pr 0.07 {3.10} and Pr 3.13

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the closed-loop stability limit is reached.

Integral gain (Ki), Pr 0.08 {3.11} and Pr 3.14

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

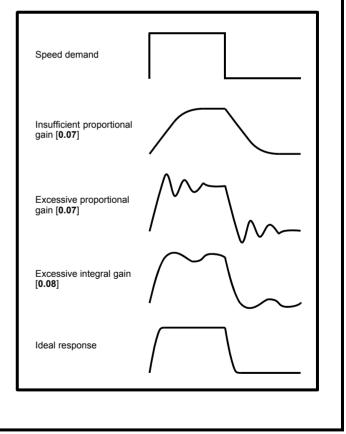
Differential gain (Kd), Pr 0.09 {3.12} and Pr 3.15

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

There are three methods of tuning the speed loop gains dependant on the setting of Pr 3.17:

1. Pr 3.17 = 0. User set-up.

This involves the connecting of an oscilloscope to analog output 1 to monitor the speed feedback. Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope. The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly. The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly. It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown. The diagram shows the effect of incorrect P and I gain settings as well as the ideal response. 2. Pr 3.17 = 1. Bandwidth set-up If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:


- Pr 3.20 Required bandwidth,
- Pr 3.21 Required damping factor,
- Pr 5.32 Motor torque per amp (Kt).

Pr 3.18 - Motor and load inertia. The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr 0.40, earlier in this table).

3. Pr 3.17 = 2, Compliance angle set-up

- If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:
 - Pr 3.19 Required compliance angle,
 - Pr 3.21 Required damping factor.
 - Pr 5.32 Motor torque per amp (Kt).

Pr 3.18 - Motor and load inertia The drive can be made to measure the motor and load inertia by performing an inertia measurement autotune (see Autotune Pr 0.40, earlier in this table).

Safety nformation		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
----------------------	--	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

8.2 Maximum motor rated current

The maximum motor rated current allowed by the drive is greater than the maximum Heavy Duty current rating in Pr **11.32**. The ratio between the Normal Duty rating and the Heavy Duty rating (Pr **11.32**) varies between drive sizes. The values for the Normal and Heavy Duty rating can be found in section 2.2 *Ratings* on page 9.

If the motor rated current (Pr **0.46**) is set above the maximum Heavy Duty current rating (Pr **11.32**), the current limits and the motor thermal protection scheme are modified (see *section 8.3 Current limits* and *section 8.4 Motor thermal protection*, for more information).

8.3 Current limits

The default settings for the current limit parameters for Unidrive SP size 6 to 9 are:

- 138.1% x motor rated current for open loop mode
- 165.7% x motor rated current for closed loop vector mode
- 150% x motor rated current for servo mode

There are three parameters which control the current limits:

- · Motoring current limit: power flowing from the drive to the motor
- Regen current limit: power flowing from the motor to the drive
- Symmetrical current limit: current limit for both motoring and regen
 operation

The lowest of either the motoring and regen current limit, or the symmetrical current limit applies.

The maximum setting of these parameters depends on the values of motor rated current, drive rated current and the power factor.

Increasing the motor rated current (Pr **0.46/5.07**) above the Heavy Duty rating (default value), will automatically reduce the current limits in Pr **4.05** to Pr **4.07**. If the motor rated current is then set to or below the Heavy Duty rating, the current limits will be left at their reduced values.

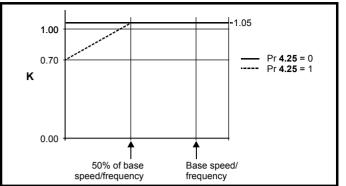
The drive can be oversized to permit a higher current limit setting to provide higher accelerating torque as required up to a maximum of 1000%.

8.4 Motor thermal protection

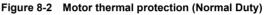
The drive models the temperature of the motor using the motor rated current (Pr **5.07**), the thermal time constant (Pr **4.15**), whether low speed thermal protection mode has been enabled (Pr **4.25**) and the actual current flowing at any point in time. Pr **4.19** gives the estimated motor temperature as a percentage of maximum temperature.

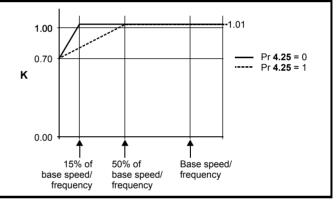
The temperature of the motor ($\Pr 4.19$) as a percentage of maximum temperature, with a constant current magnitude of I, constant value of K and constant value of Motor rated current ($\Pr 5.07$) after time t is given by:

Percentage motor temperature (Pr 4.19)


= $[I^2 / (K \times Motor rated current)^2] (1 - e^{-t/\tau}) \times 100\%$

This assumes that the maximum allowed motor temperature is produced by K x Motor rated current and that τ is the thermal time constant of the point in the motor that reaches its maximum allowed temperature first. τ is defined by Pr **4.15**. If Pr **4.15** has a value between 0.0 and 1.0 the thermal time constant is taken as 1.0.


The value of K is defined as shown in Figure 8-1 and Figure 8-2.


For both Heavy and Normal duty ratings, Pr **4.25** can be used to select two alternative protection characteristics.

If Pr **4.25** is 0 the characteristic is for a motor which can operate at rated current over the whole speed range. Induction motors with this type of characteristic normally have forced cooling. If Pr **4.25** is 1 the characteristic is intended for motors where the cooling effect of motor fan reduces with reduced motor speed below 50% of base speed/ frequency. The maximum value for K is 1.05, so that above the knee of the characteristics the motor can operate continuously up to 105% current.

Both settings of Pr **4.25** are intended for motors where the cooling effect of the motor fan reduces with reduced motor speed, but with different speeds below which the cooling effect is reduced. If Pr **4.25** is 0 the characteristic is intended for motors where the cooling effect reduces with motor speed below 15% of base speed/frequency. If Pr **4.25** is 1 the characteristic is intended for motors where the cooling effect reduces with motor speed below 50% of base speed/frequency. The maximum value for K is 1.01, so that above the knee of the characteristics the motor can operate continuously up to 101% current.

When the estimated temperature in Pr **4.19** reaches 100% the drive takes some action depending on the setting of Pr **4.16**. If Pr **4.16** is 0, the drive trips when Pr **4.19** reaches 100%. If Pr **4.16** is 1, the current limit is reduced to $(K - 0.05) \times 100\%$ when Pr **4.19** reaches 100%. The current limit is set back to the user defined level when Pr **4.19** falls below 95%. The thermal model temperature accumulator is reset to zero at power-up and accumulates the temperature of the motor while the drive remains powered-up. If the rated current defined by Pr **5.07** is altered, the accumulator is reset to zero.

The default setting of the thermal time constant (Pr **4.15**) is 89s for an induction motor (open loop and closed loop vector), which is equivalent to an overload of 150% for 60s from cold. The default value for a servo motor is 20s, which is equivalent to an overload of 175% for 9s from cold.

The time for the drive to trip from cold with constant motor current is given by:

 $T_{trip} = -(Pr 4.15) \times In(1 - (K \times Pr 5.07 / Pr 4.01)^2)$

Safety Product Mechanical Electrical Getting Basic Running the motor Optimization SMARTCARD Onboard Advanced Technical Diagnostics Diagnostics					PLC	naramotoro		al Di	Diagnostics		Listing mation
---	--	--	--	--	-----	------------	--	-------	-------------	--	-------------------

Alternatively the thermal time constant can be calculated from the trip time with a given current from:

Pr 4.15 = -T_{trip} / In(1 - (K / Overload)²)

The maximum value for the thermal time constant can be increased up to a maximum value of 3000s to allow an increased overload if the motor thermal characteristics permit.

For applications using CT Dynamics Unimotors the thermal time constants can be found in the Unimotor manual.

8.5 Switching frequency

The default switching frequency is 3kHz (6kHz in Servo mode), however this can be increased up to a maximum of 6kHz by Pr **5.18**. The available switching frequencies are shown below.

Drive size	Voltage rating	3kHz	4kHz	6kHz
6	All	~	~	~
7	All	~	~	~
8	All	~	~	~
9	All	✓	√	✓

If switching frequency is increased from 3kHz the following apply:

1. Increased heat loss in the drive, which means that derating to the output current must be applied.

See the derating tables for switching frequency and ambient temperature in section 12.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 233.

- 2. Reduced heating of the motor due to improved output waveform quality.
- 3. Reduced acoustic noise generated by the motor.
- Increased sample rate on the speed and current controllers. A trade off must be made between motor heating, drive heating and the demands of the application with respect to the sample time required.

Table 8-2 Sample rates for various control tasks at each switching frequency

	3, 6kHz	4kHz	Open loop	Closed loop vector and Servo				
Level 1	3kHz = 167μs 6kHz = 83μs 12kHz = 83μs	125µs	Peak limit	Current controllers				
Level 2	250µs		Current limit Speed controlle and ramps and ramps					
Level 3	1ms		Voltage	e controller				
Level 4	4ms		Time critica	l user interface				
Background			Non-time criti	cal user interface				

8.6 High speed operation

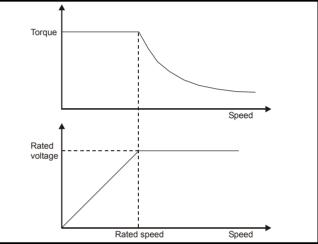
8.6.1 Encoder feedback limits

The maximum encoder frequency should be prevented from exceeding 500kHz (or 410kHz for software V01.06.00 and earlier). In closed loop and servo modes the maximum speed that can be entered in to the speed reference clamps (Pr **1.06** and Pr **1.07**) can be limited by the drive. This is defined by the following (subject to an absolute maximum of 40,000rpm):

Maximum speed limit (rpm) =
$$\frac{\frac{500 \text{ kHz x } 60}{\text{ ELPR}}}{\frac{3.0 \text{ x } 10^7}{\text{ ELPR}}}$$

Where:

ELPR is the equivalent encoder lines per revolution and is the number of lines that would be produced by a quadrature encoder.


- Quadrature encoder ELPR = number of lines per revolution
 - F and D encoder ELPR = number of lines per revolution / 2
 - SINCOS encoder ELPR = number of sine waves per revolution

This maximum speed limit is defined by the device selected with the speed feedback selector (Pr **3.26**), and the ELPR set for the position feedback device. In closed-loop vector mode it is possible to disable this limit via Pr **3.24**, so that the drive can be switched between operation with and without feedback when the speed becomes too high for the feedback device. The maximum speed limit is defined as above when Pr **3.24** = 0 or 1, and is 40,000rpm when Pr **3.24** = 2 or 3.

8.6.2 Field weakening (constant power) operation (Open loop and closed loop vector mode only)

The drive can be used to run an induction machine above synchronous speed into the constant power region. The speed continues to increase and the available shaft torque reduces. The characteristics below show the torque and output voltage characteristics as the speed is increased above the rated value.

Figure 8-3 Torque and rated voltage against speed

Care must be taken to ensure the torque available above base speed is sufficient for the application to run satisfactorily.

The saturation breakpoint parameters (Pr **5.29** and Pr **5.30**) found during the autotune in closed loop vector mode ensure the magnetizing current is reduced in the correct proportion for the specific motor. (In open loop mode the magnetizing current is not actively controlled.)

8.6.3 Servo high speed operation

High speed servo mode is enabled by setting Pr **5.22** =1. Care must be taken when using this mode with servo motors to avoid damaging the drive. The voltage produced by the servo motor magnets is proportional to speed. For high speed operation the drive must apply currents to the motor to counter-act the flux produced by the magnets. It is possible to operate the motor at very high speeds that would give a very high motor terminal voltage, but this voltage is prevented by the action of the drive. If however, the drive is disabled (or tripped) when the motor voltages would be higher than the rating of the drive without the currents to counter-act the flux from the magnets, it is possible to damage the drive. If high speed mode is enabled the motor speed must be limited to the levels given in the table below unless an additional hardware protection system is used to limit the voltages applied to the drive output terminals to a safe level.

Safety Product Mechanical Electrical Getting Basic Runningthe Optimization Optimization Information information Installation Installation Started parameters Motor Optimization	SMARTCARD Onboard Advanced Technical Diagnostics UL Listing PLC parameters Data
---	---

Drive voltage rating	Maximum motor speed (rpm)	Maximum safe line to line voltage at the motor terminals (V rms)
400	800 x 1000 / (Ke x √2)	800 / √2
690	1145 x 1000 / (Ke x √2)	1145 / √2

Ke is the ratio between r.m.s. line to line voltage produced by the motor and the speed in V/1000rpm. Care must also be taken not to demagnetize the motor. The motor manufacturer should always be consulted before using this mode.

8.6.4 Switching frequency

With a default switching frequency of 3 kHz the maximum output frequency should be limited to 250 Hz. Ideally a minimum ratio of 12:1 should be maintained between the switching frequency and the output frequency. This ensures the number of switchings per cycle is sufficient to ensure the output waveform quality is maintained at a minimum level. If this is not possible, quasi-square switching should be enabled (Pr **5.20** =1). The output waveform will be quasi square above base speed ensuring a symmetrical output waveform, which results in a better quality output than would otherwise result.

8.6.5 Maximum speed / frequency

In open loop mode the maximum frequency is 3,000 Hz.

In closed loop vector mode the maximum output frequency is 600Hz.

In servo mode the maximum output frequency is 1250Hz, however the speed is limited by the voltage constant (Ke) of the motor. Ke is a specific constant for the servo motor being used. It can normally be found on the motor data sheet in V/krpm (volts per 1,000rpm).

8.6.6 Quasi-Square wave (open-loop only)

The maximum output voltage level of the drive is normally limited to an equivalent of the drive input voltage minus voltage drops within the drive (the drive will also retain a few percent of the voltage in order to maintain current control). If the motor rated voltage is set at the same level as the supply voltage, some pulse deletion will occur as the drive output voltage approaches the rated voltage level. If Pr **5.20** (Quasi-square wave enable) is set to 1 the modulator will allow over modulation, so that as the output frequency increases beyond the rated frequency the voltage continues to increase above the rated voltage. The modulation depth will increase beyond unity; first producing trapezoidal and then quasi-square waveforms.

This can be used for example:

 To obtain high output frequencies with a low switching frequency which would not be possible with space vector modulation limited to unity modulation depth,

or

In order to maintain a higher output voltage with a low supply voltage.

The disadvantage is that the machine current will be distorted as the modulation depth increases above unity, and will contain a significant amount of low order odd harmonics of the fundamental output frequency. The additional low order harmonics cause increased losses and heating in the motor.

Safety Product Mechanical Electrical Getting Basic Running the Optimization SMARTC Information information Installation Installation Started parameters motor Optimization Smartc		Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	--	---------------------	-------------------	-------------	---------------------------

9 SMARTCARD operation

9.1 Introduction

This is a standard feature that enables simple configuration of parameters in a variety of ways. The SMARTCARD can be used for:

- Parameter copying between drives
- · Saving whole drive parameter sets
- · Saving 'differences from default' parameter sets
- Storing Onboard PLC programs
- Automatically saving all user parameter changes for maintenance purposes
- Loading complete motor map parameters

The SMARTCARD is located at the top of the module under the drive display (if installed) on the left-hand side. Ensure the SMARTCARD is inserted with the SP1-9 arrow pointing upwards.

The drive only communicates with the SMARTCARD when commanded to read or write, meaning the card may be "hot swapped".

Encoder phase angle (servo mode only)

With drive software version V01.08.00 onwards, the encoder phase angles in Pr **3.25** and Pr **21.20** are copied to the SMARTCARD when using any of the SMARTCARD transfer methods.

With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr **3.25** and Pr **21.20** are only copied to the SMARTCARD when using either Pr **0.30** set to Prog (2) or Pr **xx.00** set to 3yyy.

This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives. Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr 3.25 (or Pr 21.20). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr xx.00 set to 4yyy is used, then the encoder phase angles in Pr 3.25 and Pr 21.20 are not copied to the SMARTCARD. Therefore, Pr 3.25 and Pr 21.20 in the destination would not be changed during a transfer of this data block from the SMARTCARD.

Easy saving and reading

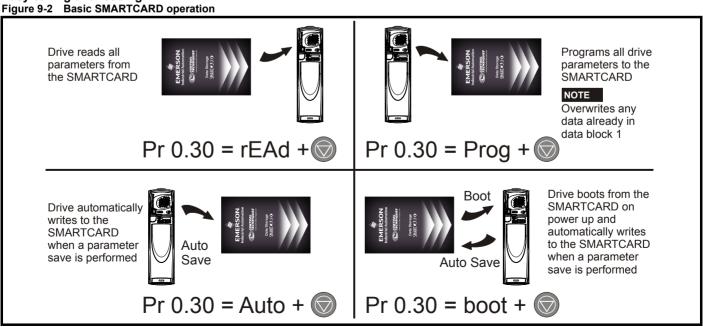
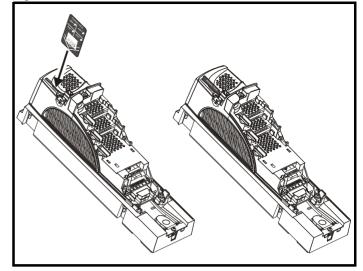



Figure 9-1 Installation of the SMARTCARD

The SMARTCARD has 999 individual data block locations. Each individual location from 1 to 499 can be used to store data until the capacity of the SMARTCARD is used. The drive can support SMARTCARDs with a capacity of between 4kB and 512kB.

The data block locations of the SMARTCARD are arranged to have the following usage:

Table 9-1 SMARTCARD data blocks

Data Block	Туре	Example Use
1 to 499	Read / Write	Application set ups
500 to 999	Read Only	Macros

'Differences from default' parameter sets will be much smaller than whole parameter sets and thus take up a lot less memory as most applications only require a few parameters to be changed from the default setting.

The whole card may be protected from writing or erasing by setting the read-only flag as detailed section 9.2.9 *9888 / 9777 - Setting and clearing the SMARTCARD read only flag* on page 121.

Data transfer to or from the SMARTCARD is indicated by one the following:

- SM-Keypad: The decimal point after the fourth digit in the upper display will flash
- SM-Keypad Plus: The symbol 'CC' will appear in the lower left hand corner of the display

The card should not be removed during data transfer, as the drive will produce a trip. If this occurs then either the transfer should be reattempted or in the case of a card to drive transfer, default parameters should be loaded.

9.2 Transferring data

Data transfer, erasing and protecting the information is performed by entering a code in Pr **xx.00** and then resetting the drive as shown in Table 9-2.

Table	9-2	SMARTCARD codes
-------	-----	-----------------

Code	Action
2001	Transfer drive parameters as difference from defaults to a bootable SMARTCARD block in data block number 001
Зууу	Transfer drive parameters to a SMARTCARD block number yyy
4ууу	Transfer drive data as difference from defaults to SMARTCARD block number yyy
5ууу	Transfer drive Onboard PLC program to SMARTCARD block number yyy
бууу	Transfer SMARTCARD data block yyy to the drive
7ууу	Erase SMARTCARD data block yyy
8ууу	Compare drive parameters with block yyy
9555	Clear SMARTCARD warning suppression flag (V01.07.00 and later)
9666	Set SMARTCARD warning suppression flag (V01.07.00 and later)
9777	Clear SMARTCARD read-only flag
9888	Set SMARTCARD read-only flag
9999	Erase SMARTCARD

Where yyy indicates the block number 001 to 999. See Table 9-1 for restrictions on block numbers.

NOTE

If the read only flag is set then only codes 6yyy or 9777 are effective.

9.2.1 Writing to the SMARTCARD

3yyy - Transfer data to the SMARTCARD

The data block contains the complete parameter data from the drive, i.e. all user save (US) parameters except parameters with the NC coding bit set. Power-down save (PS) parameters are not transferred to the SMARTCARD.

With software V01.06.02 and earlier, a save must have been performed on the drive to transfer the parameters from the drive RAM to the EEPROM before the transfer to the SMARTCARD is carried out.

4yyy - Write default differences to a SMARTCARD

The data block only contains the parameter differences from the last time default settings were loaded.

Six bytes are required for each parameter difference. The data density is not as high as when using the 3yyy transfer method as described in the previous section, but in most cases the number of differences from default is small and the data blocks are therefore smaller. This method can be used for creating drive macros. Power-down save (PS) parameters are not transferred to the SMARTCARD.

The data block format is different depending on the software version. The data block holds the following parameters:

Software V01.06.02 and earlier

All user save (US) parameters, except those with the NC (Not copied) coding bit set or those that do not have a default value, can be transferred to the SMARTCARD.

Software V01.07.xx

All user save (US) parameters, except those with the NC (Not copied) coding bit set or those that do not have a default value, can be transferred to the SMARTCARD. In addition to these parameters all menu 20 parameters (except Pr **20.00**), can be transferred to the SMARTCARD even though they are not user save parameters and have the NC coding bit set.

Software V01.08.00 onwards

All user save (US) parameters including those that do not have a default value (i.e. Pr **3.25** or Pr **21.20** *Encoder phase angle*), but not including those with the NC (Not copied) coding bit set can be transferred to the SMARTCARD. In addition to these parameters all menu 20 parameters (except Pr **20.00**), can be transferred to the SMARTCARD even though they are not user save parameters and have the NC coding bit set.

It is possible to transfer parameters between drives with each of the different formats, however, the data block compare function does not work with data produced by different formats.

Writing a parameter set to the SMARTCARD (Pr 11.42 = Prog (2))

Setting Pr **11.42** to Prog (2) and resetting the drive will save the parameters to the SMARTCARD, i.e. this is equivalent to writing 3001 to Pr **xx.00**. All SMARTCARD trips apply except 'C.Chg'. If the data block already exists it is automatically overwritten. When the action is complete this parameter is automatically reset to nonE (0).

9.2.2 Reading from the SMARTCARD

6yyy - Read default differences from a SMARTCARD

When the data is transferred back to a drive, using 6yyy in Pr **xx.00**, it is transferred to the drive RAM and the drive EEPROM. A parameter save is not required to retain the data after power-down. Set up data for any Solutions Modules installed are stored on the card and are transferred to the destination drive. If the Solutions Modules are different between the source and destination drive, the menus for the slots where the Solutions Module categories are different are not updated from the card and will contain their default values after the copying action. The drive will produce a 'C.Optn' trip if the Solutions Modules installed to the source and destination drive are different or are in different slots. If the data is being transferred to a drive of a different voltage or current rating a 'C.rtg' trip will occur.

The following drive rating dependant parameters (RA coding bit set) will not be transferred to the destination drive by a SMARTCARD when the rating of the destination drive is different from the source drive and the file is a parameter file (i.e. created using the 3yyy transfer method).

Safety Product Mechanical Electrical Getting Basic Runningthe Information Installation Installation Started parameters motor motor	Optimization Onboard PLC Advanced Data Diagnostics UL Listing Information
--	---

However, with software V01.09.00 and later drive rating dependent parameters will be transferred if only the current rating is different and the file is a differences from default type file (i.e. created using the 4yyy transfer method). If drive rating dependant parameters are not transferred to the destination drive they will contain their default values.

- Pr 2.08 Standard ramp voltage
- Pr 4.05 to Pr 4.07 and Pr 21.27 to Pr 21.29 Current limits
- Pr 4.24, User current maximum scaling
- Pr 5.07, Pr 21.07 Motor rated current
- Pr 5.09, Pr 21.09 Motor rated voltage
- Pr 5.10, Pr 21.10 Rated power factor
- Pr 5.17, Pr 21.12 Stator resistance
- Pr 5.18 Switching frequency
- Pr 5.23, Pr 21.13 Voltage offset
- Pr 5.24, Pr 21.14 Transient inductance
- Pr 5.25, Pr 21.24 Stator inductance
- Pr 6.06 DC injection braking current
- Pr 6.48 Line power supply loss ride through detection level

Reading a parameter set from the SMARTCARD (Pr 11.42 = rEAd (1))

Setting Pr **11.42** to rEAd (1) and resetting the drive will transfer the parameters from the card into the drive parameter set and the drive EEPROM, i.e. this is equivalent to writing 6001 to Pr **xx.00**. All SMARTCARD trips apply. Once the parameters are successfully copied this parameter is automatically reset to nonE (0). Parameters are saved to the drive EEPROM after this action is complete.

NOTE

This operation is only performed if data block 1 on the card is a full parameter set (3yyy transfer) and not a default difference file (4yyy transfer). If block 1 does not exist a 'C.dAt' trip occurs.

9.2.3 Auto saving parameter changes (Pr 11.42 = Auto (3))

This setting causes the drive to automatically save any changes made to menu 0 parameters on the drive to the SMARTCARD. The latest menu 0 parameter set in the drive is therefore always backed up on the SMARTCARD. Changing Pr **11.42** to Auto (3) and resetting the drive will immediately save the complete parameter set from the drive to the card, i.e. all user save (US) parameters except parameters with the NC coding bit set. Once the whole parameter set is stored only the individual modified menu 0 parameter setting is updated.

Advanced parameter changes are only saved to the card when $\Pr{\textbf{xx.00}}$ is set to a 1000 and the drive reset.

All SMARTCARD trips apply, except 'C.Chg'. If the data block already contains information it is automatically overwritten.

If the card is removed when Pr 11.42 is set to 3 Pr 11.42 is then automatically set to nonE (0).

When a new SMARTCARD is installed Pr **11.42** must be set back to Auto (3) by the user and the drive reset so the complete parameter set is rewritten to the new SMARTCARD if auto mode is still required.

When Pr **11.42** is set to Auto (3) and the parameters in the drive are saved, the SMARTCARD is also updated, therefore the SMARTCARD becomes a copy of the drives stored configuration.

At power up, if Pr **11.42** is set to Auto (3), the drive will save the complete parameter set to the SMARTCARD. The drive will display 'cArd' during this operation. This is done to ensure that if a user puts a new SMARTCARD in during power down the new SMARTCARD will have the correct data.

NOTE

When Pr **11.42** is set to Auto (3) the setting of Pr **11.42** itself is saved to the drive EEPROM but NOT to the SMARTCARD.

9.2.4 Booting up from the SMARTCARD on every power up (Pr 11.42 = boot (4))

When Pr **11.42** is set to boot (4) the drive operates the same as Auto mode except when the drive is powered-up. The parameters on the SMARTCARD will be automatically transferred to the drive at power up if the following are true:

- A card is inserted in the drive
- · Parameter data block 1 exists on the card
- The data in block 1 is type 1 to 5 (as defined in Pr 11.38)
- Pr 11.42 on the card set to boot (4)

The drive will display 'boot' during this operation. If the drive mode is different from that on the card, the drive gives a 'C.Typ'. trip and the data is not transferred.

If 'boot' mode is stored on the copying SMARTCARD this makes the copying SMARTCARD the master device. This provides a very fast and efficient way of re-programming a number of drives.

If data block 1 contains a bootable parameter set and data block 2 contains an Onboard PLC program (type 17 as defined in Pr **11.38**), then if the drive software version is V01.07.00 and later, the onboard PLC program will be transferred to the drive at power up along with the parameter set in data block 1.

NOTE

'Boot' mode is saved to the card, but when the card is read, the value of Pr **11.42** is not transferred to the drive.

9.2.5 Booting up from the SMARTCARD on every power up (Pr xx.00 = 2001), software V01.08.00 and later

It is possible to create a difference from default bootable file by setting Pr **xx.00** to 2001 and resetting the drive. This type of file causes the drive to behave in the same way at power-up as a file created with boot mode set up with Pr **11.42**. The difference from the default file is that it has the added advantage of including menu 20 parameters.

Setting Pr **xx.00** to 2001 will overwrite data block 1 on the card if it already exists.

If a data block 2 exists and contains an Onboard PLC program (type 17 as defined in Pr 11.38), this will also be loaded after the parameters have been transferred

A bootable difference from default file can only be created in one operation and parameters cannot be added as they are saved via menu 0.

9.2.6 8yyy - Comparing the drive full parameter set with the SMARTCARD values

Setting 8yyy in Pr **xx.00**, will compare the SMARTCARD file with the data in the drive. If the compare is successful Pr **xx.00** is simply set to 0. If the compare fails a 'C.cpr' trip is initiated.

9.2.7 7yyy / 9999 - Erasing data from the SMARTCARD

Data can be erased from the SMARTCARD either one block at a time or all blocks in one go.

- Setting 7yyy in Pr xx.00 will erase SMARTCARD data block yyy.
- Setting 9999 in Pr xx.00 will erase all SMARTCARD data blocks

9.2.8 9666 / 9555 - Setting and clearing the SMARTCARD warning suppression flag (V01.07.00 and later)

If the Solutions Modules installed to the source and destination drive are different or are in different slots the drive will produce a 'C.Optn' trip. If the data is being transferred to a drive of a different voltage or current rating a 'C.rtg' trip will occur. It is possible to suppress these trips by setting the warning suppression flag. If this flag is set the drive will not trip if the Solutions Module(s) or drive ratings are different between the source and destination drives. The Solutions Module or rating dependent parameters will not be transferred.

- Setting 9666 in Pr xx.00 will set the warning suppression flag
- Setting 9555 in Pr xx.00 will clear the warning suppression flag

9.2.9 9888 / 9777 - Setting and clearing the SMARTCARD read only flag

The SMART CARD may be protected from writing or erasing by setting the read only flag. If an attempt is made to write or erase a data block when the read only flag is set, a 'C.rdo' trip is initiated. When the read only flag is set only codes 6yyy or 9777 are effective.

- Setting 9888 in Pr xx.00 will set the read only flag
- Setting 9777 in Pr xx.00 will clear the read only flag.

Safety Product Mechanical Electrical Getting Basic Runningthe Optimization SMARTCARD Onboa Information Installation Installation Started parameters motor Optimization SmartCard Onboa	rd Advanced parameters		Diagnostics	UL Listing Information
--	------------------------	--	-------------	---------------------------

9.3 Data block header information

Each data block stored on a SMARTCARD has header information detailing the following:

- A number which identifies the block (Pr 11.37)
- The type of data stored in the block (Pr 11.38)
- The drive mode if the data is parameter data (Pr 11.38)
- The version number (Pr 11.39)
- The checksum (Pr 11.40)
- The read-only flag
- The warning suppression flag (V01.07.00 and later)

The header information for each data block which has been used can be viewed in Pr **11.38** to Pr **11.40** by increasing or decreasing the data block number set in Pr **11.37**.

Software V01.07.00 and later

If Pr **11.37** is set to 1000 the checksum parameter (Pr **11.40**) shows the number of 16 byte pages left on the card.

If Pr **11.37** is set to 1001 the checksum parameter (Pr **11.40**) shows the total capacity of the card in 16 byte pages. Therefore, for a 4kB card this parameter would show 254.

If Pr **11.37** is set to 1002 the checksum parameter (Pr **11.40**) shows the state of the read-only (bit 0) and warning suppression flags (bit 1).

Software version V01.11.00 and later: If Pr **11.37** is set to 1003, the checksum parameter (Pr **11.40**) shows the product identifier (255 = Unidrive SP, 1 = Commander GP20, 2 = Digitax ST, 3 = Affinity).

If there is no data on the card Pr **11.37** can only have values of 0 or 1000 to 1003.

Software V01.06.02 and earlier

If Pr **11.37** is set to 1000 the checksum parameter (Pr **11.40**) shows the number of bytes left on the card. If there is no data on the card Pr **11.37** can only have values of 0 or 1000.

The version number is intended to be used when data blocks are used as drive macros. If a version number is to be stored with a data block, Pr **11.39** should be set to the required version number before the data is transferred. Each time Pr **11.37** is changed by the user the drive puts the version number of the currently viewed data block in Pr **11.39**.

If the destination drive has a different drive mode to the parameters on the card, the drive mode will be changed by the action of transferring parameters from the card to the drive.

The actions of erasing a card, erasing a file, changing a menu 0 parameter, or inserting a new card will effectively set Pr **11.37** to 0 or the lowest file number in the card.

9.4 SMARTCARD parameters

Table 9-3 Key to parameter table coding

-			-				
RW	Read / Write	RO	Read only	Uni	Unipolar		
Bi	Bi Bi-polar		Bi Bi-polar		Bit parameter	Txt	Text string
FI	Filtered DE Destination		NC	Not copied			
RA	Rating dependent	PT	Protected	US	User save		
PS	Power down save						

11.	11.36 {0.29} SMARTCARD parameter data previously loade								əd		
R	0	Uni						NC	PT	US	
€	0 to 999					⊳			0		

This parameter shows the number of the data block last transferred from a SMARTCARD to the drive.

	11.37 SMARTCARD data number										
R١	RW Uni NC										
€	0 to 1003					₽			0		

This parameter should have the data block number entered for which the user would like information displayed in Pr **11.38**, Pr **11.39** and Pr **11.40**.

11.38			SMARTCARD data type/mode									
R	С	Txt						NC	PT			
€	0 to 18					Û						

Gives the type/mode of the data block selected with Pr 11.37:

Pr 11.38	String	Type/mode	Data stored
0	FrEE	Value when Pr 11.37 = 0, 1000 to 1003	
1		Reserved	
2	30pEn.LP	Open-loop mode parameters	
3	3CL.VECt	Closed-loop vector mode parameters	Data (asso
4	3SErVO	Servo mode parameters	Data from EEPROM
5	3rEgEn	Regen mode parameters	
6 to 8	3Un	Unused	
9		Reserved	
10	40pEn.LP	Open-loop mode parameters	
11	4CL.VECt	Closed-loop vector mode parameters	Defaults last
12	4SErVO	Servo mode parameters	loaded and
13	4rEgEn	Regen mode parameters	differences
14 to 16	4Un	Unused	
17	LAddEr	Onboard PLC program	
18	Option	A Solutions Module file	

	11.39 SMARTCARD data version												
R۱	N	Uni				NC							
€		0 to 9,999							0				

Gives the version number of the data block selected in Pr 11.37.

1'	.40	SMAR	TCAR	D data	che	cks	um		
R0	Uni						NC	PT	
$\hat{\mathbf{x}}$	0 to 65,335								

Gives the checksum of the data block selected in Pr 11.37.

11.	11.42 {0.30} Parameter copying											
R١	N	Txt					NC US*					
$\hat{\mathbf{v}}$	0 to 4								nonE	(0)		

NOTE

If Pr **11.42** is equal to 1 or 2, this value is not transferred to the drive or saved to the EEPROM. If Pr **11.42** is set to a 3 or 4 the value is transferred.

nonE (0) = Inactive

rEAd (1) = Read parameter set from the SMARTCARD

Prog (2) = Programming a parameter set to the SMARTCARD

Auto (3) = Auto save

boot (4) = Boot mode

Safety Product Mechanical Electrical Getting Basic Running the motor Optimiza Information Installation Installation Started parameters Running the motor Optimiza	ion SMARTCARD Onboard Advanced parameters Data Diagnostics Information
---	--

9.5 SMARTCARD trips

After an attempt to read, write or erase data to or from a SMARTCARD a trip may occur if there has been a problem with the command. The following trips indicate various problems as detailed in Table 9-4.

Table 9-4 Trip conditions

Trip	Diagnosis
C.Acc	SMARTCARD trip: SMARTCARD Read / Write fail
405	Check SMARTCARD is installed / located correctly
185	Ensure SMARTCARD is not writing data to data location 500 to 999 Replace SMARTCARD
	SMARTCARD trip: The menu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has
C.boot	not been created on the SMARTCARD
	A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the
177	SMARTCARD has not been created
	Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD
C.bUSY	Re-attempt the parameter write to the menu 0 parameter SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module
178	Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function
C.Chg	SMARTCARD trip: Data location already contains data
179	Erase data in data location Write data to an alternative data location
C.Cpr	SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different
188	
	Press the red 💿 reset button
C.dat	SMARTCARD trip: Data location specified does not contain any data
183	Ensure data block number is correct
C.Err	SMARTCARD trip: SMARTCARD data is corrupted
182	Ensure the card is located correctly Erase data and retry
102	Replace SMARTCARD
C.Full	SMARTCARD trip: SMARTCARD full
184	Delete a data block or use a different SMARTCARD
C.Optn	SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive
	Ensure correct Solutions Modules are installed
180	Ensure Solutions Modules are in the same Solutions Module slot
	Press the red 💿 reset button
C.Prod	SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product
175	Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red 💿 reset button
1/5	Replace SMARTCARD
C.rdo	SMARTCARD trip: SMARTCARD has the Read only bit set
181	Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access
	Ensure the drive is not writing to data locations 500 to 999 on the card

Untimization	Safety Information	Product Mechanical information Installation			Basic Running the rameters motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--------------	-----------------------	--	--	--	-------------------------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Trip	-												
C.rtg	SMARTCARD trip: The vo	Itage and/or current rating of the source and destination	drives are different										
	different voltage and curren when the rating of the desti	tton	t to the destination drive by SMARTCARI parameter file. However, with software										
	Parameter	Function											
	2.08	Standard ramp voltage											
	4.05/6/7, 21.27/8/9	Current limits											
186	4.24	User current maximum scaling											
180	5.07, 21.07	Motor rated current											
	5.09, 21.09	Motor rated voltage											
	5.10, 21.10	Rated power factor											
	5.17, 21.12	Stator resistance											
	5.18	Switching frequency											
	5.23, 21.13	Voltage offset											
	5.24, 21.14	Transient inductance											
	5.25, 21.24	Stator inductance											
	6.06	DC injection braking current											
	6.48	Line power supply loss ride through detection level											
	The above parameters will	pe set to their default values.											
С.Тур	SMARTCARD trip: SMAR	CARD parameter set not compatible with drive											
187	Press the red 😡 reset bu	iton											

Table 9-5 SMARTCARD status indications

Lower display	Description	Lower display	Description
	A parameter set is being transferred from the SMARTCARD to the drive during power-up. For further information, please refer to section 9.2.4 <i>Booting up</i> <i>from the SMARTCARD on every power up (Pr 11.42 =</i> <i>boot (4))</i> .	cArd	The drive is writing a parameter set to the SMARTCARD during power-up. For further information, please refer to section 9.2.3 <i>Auto saving parameter changes (Pr 11.42 = Auto (3))</i> .

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

10 Onboard PLC

10.1 Onboard PLC and SYPTLite

The drive has the ability to store and execute a 4KB Onboard PLC ladder logic program without the need for additional hardware in the form of a Solutions Module.

The ladder logic program is written using SYPTLite, a Windows™ based ladder diagram editor allowing the development of programs for execution in Unidrive SP or SM-Applications Lite.

SYPTLite is designed to be easy to use and to make program development as simple as possible. The features provided are a sub-set of those in the SYPT program editor. SYPTLite programs are developed using ladder logic, a graphical language widely used to program PLCs (IEC61131-3). SYPTLite allows the user to "draw" a ladder diagram representing a program.

SYPTLite provides a complete environment for the development of ladder diagrams. Ladder diagrams can be created, compiled into user programs and downloaded to a Unidrive SP or SM-Applications Lite for execution, via the RJ45 serial communications port on the front of the drive. The run-time operation of the compiled ladder diagram on the target can also be monitored using SYPTLite and facilities are provided to interact with the program on the target by setting new values for target parameters.

SYPTLite is available on the CD which is supplied with the drive.

10.2 Benefits

The combination of the Onboard PLC and SYPTLite, means that the drive can replace nano and some micro PLCs in many applications. The Onboard PLC programs can consist of up to a maximum of 50 ladder logic rungs (up to 7 function blocks and 10 contacts per rung). The Onboard PLC program can also be transferred to and from a SMARTCARD for backup or quick commissioning/start-up

In addition to the basic ladder symbols, SYPTLite contains a sub-set of the function from the full version of SYPT. These include,

- Arithmetic blocks
- Comparison blocks
- Timers
- Counters
- Multiplexers
- Latches
- Bit manipulation

Typical applications for the Onboard PLC include,

- Ancillary pumps
- Fans and control valves
- Interlocking logic
- Sequences routines
- Custom control words.

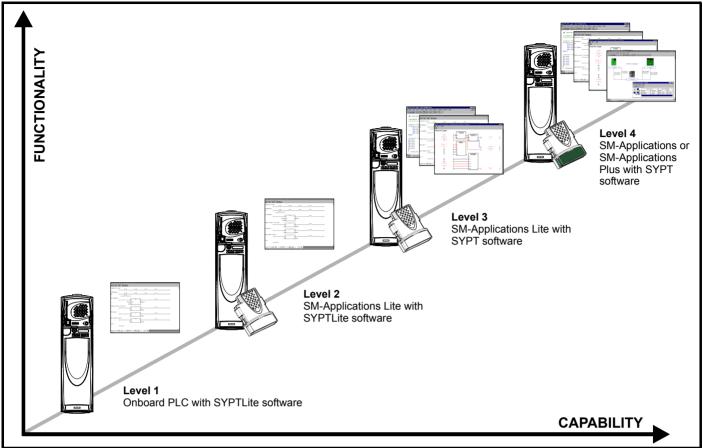

10.3 Limitations

Compared with the Applications Modules (SM-Applications, SM-Applications Lite and SM-Applications Plus) when programmed with SYPT, the Onboard PLC program has the following limitations:

- The maximum program size is 4032 bytes including header and optional source code.
- The drive is rated for 100 program downloads. This limitation is imposed by the flash memory used to store the program within the drive.
- The user cannot create user variables. The user is only able to manipulate the drive parameter set.
- The program cannot be downloaded or monitored over CTNet. The program is only accessible via the drives RJ45 serial communications port.

- There are no real-time tasks, i.e. the scheduling rate of the program cannot be guaranteed. Applications Modules tasks such as Clock, Event, Pos0 or Speed are not available.
- The Onboard PLC should not be used for time-critical applications. For time-critical applications Unidrive SP and an SM-Applications Plus, SM-Applications or SM-Applications Lite should be used.
- The program runs at a low priority. The drive provides a single background task in which to run a ladder diagram. The drive is prioritized to perform its major functions first, e.g. motor control, and will use any remaining processing time to execute the ladder diagram as a background activity. As the drive's processor becomes more heavily loaded, less time is spent executing the program.

Figure 10-1 Onboard PLC program scheduling


The user program is scheduled for a short period approximately once every 64ms. The time for which the program is scheduled will vary between 0.2ms and 2ms depending on the loading of the drive's processor.

When scheduled, several scans of the user program may be performed. Some scans may execute in microseconds. However, when the main drive functions are scheduled there will be a pause in the execution of the program causing some scans to take many milliseconds. SYPTLite displays the average execution time calculated over the last 10 scans of the user program.

The Onboard PLC and SYPTLite form the first level of functionality in a range of programmable options for Unidrive SP.

Ratings Line Black and Line S Uptimization Line S Diagnostics Line S	Safety Information	Product information	Ratings	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	, la la la lo ba		Diagnostics	UL Listing Information
--	-----------------------	------------------------	---------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------	--	-------------	---------------------------

Figure 10-2 Programming options for Unidrive SP

SYPTLite can be used with either the Onboard PLC in the Unidrive SP or with SM-Applications Lite to create ladder logic programs.

SYPT can be used with any of the Applications Modules to create fully flexible programs using ladder logic, function blocks or DPL script.

10.4 Getting started

SYPTLite can be found on the CD which is supplied with the drive.

SYPTLite system requirements

- Windows 2000/XP/Vista. Windows 95/98/98SE/Me/NT4 are not supported
- Pentium III 500MHz or better recommended
- 128MB RAM
- Minimum of 800x600 screen resolution. 1024x768 is recommended
- Adobe Acrobat 5.10 or later (for viewing User Guides)
- Microsoft Internet Explorer V5.0 or later
- RS232 to RS485, RJ45 communications lead to connect the PC to the drive
- · Administrator rights are required to install the software

To install SYPTLite, insert the CD and the auto-run facility should start up the front-end screen, from which SYPTLite can be selected.

See the SYPTLite help file for more information regarding using SYPTLite, creating ladder diagrams and the available function blocks.

10.5 Onboard PLC parameters

The following parameters are associated with the Onboard PLC program.

	11.	47	Drive	Onboa	rd PLC	pro	ogra	am ena	ble		
R١	N	Uni								US	
\hat{U}	0 to 2				₽			2			

This parameter is used to start and stop the drive Onboard PLC program.

Value	Description
0	Halt the drive Onboard PLC program.
1	Run the drive Onboard PLC program (if installed). Any out-of- range parameter writes attempted will be clipped to the maximum / minimum values valid for that parameter before being written.
2	Run the drive Onboard PLC program (if installed). Any out-of- range parameter writes attempted will cause a 'UP ovr' trip.

	11.4	48	Drive Onboard PLC program status								
R	0	Bi						NC	PT		
ţ	-128 to +127					⇔					

The drive Onboard PLC program status parameter indicates to the user the actual state of the drive Onboard PLC program.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Value	Description
-n	Onboard PLC program caused a drive trip due to an error condition while running rung n. Note that the rung number is shown on the display as a negative number.
0	Onboard PLC program is not installed.
1	Onboard PLC program is installed but stopped.
2	Onboard PLC program is installed and running.

When an Onboard PLC program is installed and running, the lower display of the drive flashes 'PLC' once every 10s.

	11.	49	Drive	Onboa	rd PLC	; pr	ogra	ammin	g even	ts	
R	0	Uni						NC	PT		PS
\hat{U}	0 to 65,535					Û					

The drive Onboard PLC programming events parameter holds the number of times an Onboard PLC program download has taken place and is 0 on dispatch from the factory. The drive is rated for one hundred ladder program downloads. This parameter is not altered when defaults are loaded.

	11.	50	Drive Onboard PLC program average scan time									
R	С	Uni						NC	PT			
$\hat{\mathbf{v}}$	0 to 65,535 ms					₽						

This parameter is updated once per second or once per Onboard PLC program scan whichever is the longest. If more than one program scan occurs within the one second update period the parameter shows the average scan time. If the program scan time is longer than one second the parameter shows the time for the last program scan.

	11.	51	Drive	Onboa	rd PLC	; pr	ogra	am firs	t run	
R	0	Bit						NC	PT	
Û	OFF (0) or On (1)					₽				

The Drive Onboard PLC program first run parameter is set for the duration of program scan from the stopped state. This enables the user to perform any required initialisation every time the program is run. This parameter is set every time the program is stopped.

10.6 Onboard PLC trips

The following trips are associated with the Onboard PLC program.

Trip	Diagnosis
UP ACC	Onboard PLC program: Cannot access Onboard PLC program file on drive
98	Disable drive - write access is not allowed when the drive is enabled. Another source is already accessing Onboard PLC program - retry once the other action is complete.
UP div0	Onboard PLC program attempted divide by zero
90	Check program
UP OFL	Onboard PLC program variables and function block calls using more than the allowed RAM space (stack overflow)
95	Check program
UP ovr	Onboard PLC program attempted out of range parameter write
94	Check program
UP PAr	Onboard PLC program attempted access to a non- existent parameter
91	Check program
UP ro	Onboard PLC program attempted write to a read- only parameter
92	Check program
UP So	Onboard PLC program attempted read of a write- only parameter
93	Check program
UP udF	Onboard PLC program undefined trip
97	Check program
UP uSEr	Onboard PLC program requested a trip
96	Check program

10.7 Onboard PLC and the SMARTCARD

The Onboard PLC program in a drive may be transferred from the drive to a SMARTCARD and vice versa.

- To transfer an Onboard PLC program from the drive to a SMARTCARD, set Pr xx.00 to 5yyy and reset the drive
- To transfer an Onboard PLC program from the SMARTCARD to a drive, set Pr **xx.00** to 6yyy and reset the drive.

(Where yyy is the data block location, see Table 9-1 *SMARTCARD data blocks* on page 120 for restrictions on block numbers).

If an attempt is made to transfer an Onboard PLC program from a drive to the SMARTCARD when the drive contains no program, the block is still created on the SMARTCARD but it will contain no data. If this data block is then transferred to a drive, the destination drive will then have no Onboard PLC program.

The smallest SMARTCARD compatible with Unidrive SP has a capacity of 4064 bytes and each block can be up to 4064 bytes in size. The maximum size of a user program is 4032 bytes so it is guaranteed that any Onboard PLC program downloaded to a Unidrive SP will fit on to an empty SMARTCARD. A SMARTCARD can contain a number of Onboard PLC programs until the capacity of the card is used.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information	I
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------	---

11 Advanced parameters

This is a quick reference to all parameters in the drive showing units, ranges limits etc, with block diagrams to illustrate their function. Full descriptions of the parameters can be found in the *Advanced User Guide* on the supplied CD ROM.

These advanced parameters are listed for reference purposes only. The lists in this chapter do not include sufficient information for adjusting these parameters. Incorrect adjustment can affect the safety of the system, and damage the drive and or external equipment. Before attempting to adjust any of these parameters, refer to the *Advanced User Guide*.

Table 11-1 Menu descriptions

Menu number	Description
0	Commonly used basic set up parameters for quick / easy programming
1	Frequency / speed reference
2	Ramps
3	Frequency slaving, speed feedback and speed control
4	Torque and current control
5	Motor control
6	Sequencer and clock
7	Analog I/O
8	Digital I/O
9	Programmable logic, motorized pot and binary sum
10	Status and trips
11	General drive set-up
12	Threshold detectors and variable selectors
13	Position control
14	User PID controller
18	Application menu 1
19	Application menu 2
20	Application menu 3
21	Second motor parameters
22	Additional Menu 0 set-up

Operation mode abbreviations:

- OL> Open loop
- CL> Closed loop (which incorporates closed loop vector and servo mode)
- VT> Closed loop vector mode
- SV> Servo

Default abbreviations:

- EUR> European default value (50Hz AC supply frequency)
- USA> USA default value (60Hz AC supply frequency)

NOTE

Parameter numbers shown in brackets {...} are the equivalent Menu 0 parameters. Some Menu 0 parameters appear twice since their function depends on the operating mode.

The Range - CL column applies to both Closed-loop Vector and Closedloop Servo. For some parameters, this column applies only to one of these modes; this is indicated accordingly in the Default columns.

In some cases, the function or range of a parameter is affected by the setting of another parameter; the information in the lists relates to the default condition of such parameters.

Table 11-2 Key to parameter table coding

Coding	Attribute
RW	Read/write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter. 'On' or 'OFF' on the display
Bi	Bipolar parameter
Uni	Unipolar parameter
Txt	Text: the parameter uses text strings instead of numbers.
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.
RA	Rating dependent: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. Parameters with this attribute will not be transferred to the destination drive by SMARTCARDs when the rating of the destination drive is different from the source drive and the file is a parameter file. However, with software V01.09.00 and later the value will be transferred if only the current rating is different and the file is a differences from default type file.
NC	Not copied: not transferred to or from SMARTCARDs during copying.
PT	Protected: cannot be used as a destination.
US	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) trip occurs. With software version V01.08.00 and later, power-down save parameters are also saved in the drive when the user initiates a parameter save.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					1								

Table 11-3 Feature look-up table

Feature						Related	parame	ters (Pr)					
Acceleration rates	2.10	2.11 t	o 2.19	2.32	2.33	2.34	2.02						
Analog speed reference 1	1.36	7.10	7.01	7.07	7.08	7.09	7.25	7.26	7.30				
Analog speed reference 2	1.37	7.14	1.41	7.02	7.11	7.12	7.13	7.28	7.31				
Analog I/O	Menu 7			-			-	-	-				
Analog input 1	7.01	7.07	7.08	7.09	7.10	7.25	7.26	7.30					
Analog input 2	7.02	7.11	7.12	7.13	7.14	7.28	7.31						
Analog input 3	7.03	7.15	7.16	7.17	7.18	7.29	7.32						
Analog output 1	7.19	7.20	7.21	7.33									
Analog output 2	7.22	7.23	7.24										
Application menu	Men			u 19	Men	u 20							
At speed indicator bit	3.06	3.07	3.09	10.06	10.05	10.07							
Auto reset	10.34	10.35	10.36	10.00	10.00	10.01							
Autotune	5.12	5.16	5.17	5.23	5.24	5.25	5.10	5.29	5.30				
Binary sum	9.29	9.30	9.31	9.32	9.33	9.34	0.10	0.20	0.00				
Bipolar speed	1.10	0.00	0.01	0.02	0.00	0.01							
Brake control		o 12.49											
Braking	10.11	10.10	10.30	10.31	6.01	2.04	2.02	10.12	10.39	10.40			
Catch a spinning motor	6.09	5.40	10.00	10.01	0.01	2.04	2.02	10.12	10.00	10.40			
Coast to stop	6.01	0.70											
Comms	11.23 t	11 26											├─── ┦
Copying	11.23 0	11.36 t	0 11 40										┝───┦
Copying Cost - per kWh electricity	6.16	6.17	6.24	6.25	6.26	6.40							├─── ┃
Current controller	4.13	4.14	0.24	0.20	0.20	0.40							├─── ┛
Current feedback	4.13	4.14	4 4 7	4.04	4.12	4.20	4.23	4.24	4.26	10.08	10.09	10.17	ļ
			4.17							10.08			ļ
Current limits	4.05	4.06	4.07	4.18	4.15	4.19	4.16	5.07	5.10	10.08	10.09	10.17	ļ
DC bus voltage	5.05	2.08	0.04										
DC injection braking	6.06	6.07	6.01	0.04	0.05.4	0.07	0.00	0.00	0.04	10.00	10.01	10.00	
Deceleration rates	2.20	2.21 t	0 2.29	2.04	2.35 t	0 2.37	2.02	2.08	6.01	10.30	10.31	10.39	ļ
Defaults	11.43	11.46											
Digital I/O	Menu 8												
Digital I/O read word	8.20												
Digital I/O T24	8.01	8.11	8.21	8.31									
Digital I/O T25	8.02	8.12	8.22	8.32									
Digital I/O T26	8.03	8.13	8.23	8.33									
Digital input T27	8.04	8.14	8.24										
Digital input T28	8.05	8.15	8.25	8.39									
Digital input T29	8.06	8.16	8.26	8.39									
Digital lock	13.10	13.01 t		13.11	13.12	13.16	3.22	3.23	13.19 t	o 13.23			
Digital output T22	8.08	8.18	8.28										
Direction	10.13	6.30	6.31	1.03	10.14	2.01	3.02	8.03	8.04	10.40			
Display timeout	11.41												
Drive active	10.02	10.40											
Drive derivative	11.28												
Drive OK	10.01	8.27	8.07	8.17	10.36	10.40							
Dynamic performance	5.26												
Dynamic V/F	5.13												
Electronic nameplate	3.49												
Enable	6.15	8.09	8.10										
Encoder reference	3.43	3.44	3.45	3.46									
Encoder set up	3.33		o 3.42	3.47	3.48								
External trip	10.32	8.10	8.07										
Fan speed	6.45												
Fast disable	6.29												
Field weakening - induction motor	5.29	5.30	1.06	5.28									
Field weakening - servo	5.22	1.06	5.09										
Filter change	6.19	6.18											
Frequency reference selection	1.14	1.15											
Frequency slaving	3.01	3.13	3.14	3.15	3.16	3.17	3.18	İ					
Hard speed reference	3.22	3.23	-	-	1	-	-	1	-	1	1	1	
Heavy duty rating	5.07	11.32											
High stability space vector													
modulation	5.19												
I/O sequencer	6.04	6.30	6.31	6.32	6.33	6.34	6.42	6.43	6.41				
											I	1	L

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running moto		ization	SMARTCARD operation	Onboar PLC	d Advanc paramet		nnical ata	Diagn	UL Listing Information
	Feature							Relate	ed paramet	ers (Pr)					
Inertia com	pensation		2.38	5.12	4.22	3.18				. ,					
Jog referen	ce		1.05	2.19	2.29										
Ke			5.33												
Keypad refe	erence		1.17 5.32	1.14	1.43	1.51	6.12	6.13	;						
Limit switch	ies		6.35	6.36											
Line power		S	6.03	10.15	10.16	5.05									
Local positi			13.20 to	0 13.23											
Logic funct			9.01	9.04	9.05	9.06	9.07	9.08		9.10					
Logic funct			9.02	9.14	9.15	9.16	9.17	9.18	9.19	9.20					
Low voltage Marker puls			6.44	6.46											
Marker puls Maximum s			3.32 1.06	3.31											
Menu 0 set	•		11.00 to	0 11.22	Menu	122									
Minimum s			1.07	10.04											
Modules - r	number of		11.35												
Motor map	_		5.06	5.07	5.08	5.09	5.10	5.11							
Motor map		4	Men		11.45	0.01	0.05			0.00					\square
Motorized p Offset spee			9.21 1.04	9.22 1.38	9.23 1.09	9.24	9.25	9.26	9.27	9.28					
Onset spee		<i>.</i> с	1.04 11.47 to		1.09								-		+
Open collect		outputs	8.30	5 11.JT	├								-	\rightarrow	+
Open loop			5.14	5.17	5.23										
Operating r			0.48	11.31	3.24	5.14									
Orientation			13.10	13.13 t											
Output			5.01	5.02	5.03	5.04									
Overspeed			3.08	<u> </u>											
Phase angl PID control			3.25 Men	5.12											
PiD control Position fee		rive	3.28	3.29	3.30	3.50									
Positive log			8.29	0.20	0.00	0.00									
Power up p			11.22	11.21											
Precision re			1.18	1.19	1.20	1.44									
Preset spee			1.15	1.21 t	o 1.28	1.16	1.14	1.42	1.45 to	1.48	1.50				
Programma Quasi squa		~~~	Menu 9 5.20												
Ramp (acc	•		5.20 2.04	2.08	6.01	2.02	2.03	10.3	0 10.31	10.39					
Rated spee			5.16	5.08	0.01	2.02	2.00	10.0	0 10.01	10.00					
Regenerati		•			10.30	10.31	6.01	2.04	2.02	10.12	10.39	10.40			
Relative jog)		13.17 to												
Relay output	ut		8.07	8.17	8.27										
Reset	<u> </u>	011/	10.33	8.02	8.22	10.34	10.35	10.3	6 10.01						
RFC mode mode)	(encoder	ess CLV	3.24	3.42	4.12	5.40									
S ramp			2.06	2.07											
Sample rate	es		5.18											-+	1
SAFE TOR	QUE OFF	(SECURE	8.09	8.10									1		1
DISABLE)	•														
Security co			11.30	11.44	$ \square $										
Serial comr Skip speed			11.23 to	1.30	1.31	1.32	1.33	1.34	1.35				-		
Skip speed Slip compe			5.27	5.08	1.31	1.32	1.33	1.34	- 1.35						
SMARTCA			11.36 to		11.42									-+	+
Software ve			11.29	11.34										-+	
Speed cont			3.10 to		3.19	3.20	3.21								
Speed feed			3.02	3.03	3.04										
Speed feed			3.26	3.27	3.28	3.29	3.30	3.31	3.42						\square
Speed references		CTION	1.14 10.40	1.15	1.49	1.50	1.01								
Status word	1		10.40 6.44	5.05	6.46										+
Switching f	requencv		5.18	5.35	7.34	7.35								-+	+
Thermal pr		drive	5.18	5.35	7.04	7.05	7.06	7.32	7.35	10.18				-	1
Thermal pr	otection - r		4.15	5.07	4.19	4.16	4.25	7.15	;				1		1
Thermistor	•		7.15	7.03											
Threshold of	detector 1		12.01	12.03 t	o 12.07										

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimiza	tion	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
	Feature						R	elate	ed paramete	rs (Pr)				
Threshold	detector 2		12.02	12.23 t	o 12.27									
Time - filter	^r change		6.19	6.18										
Time - pow	ered up log]	6.20	6.21	6.28									
Time - run	log		6.22	6.23	6.28									
Torque			4.03	4.26	5.32									
Torque mo	de		4.08	4.11	4.09	4.10								
Trip detecti	on		10.37	10.38	10.20 to	10.29								
Trip log			10.20 to	o 10.29	10.41 to	10.51	6.28							
Under volta	age		5.05	10.16	10.15									
V/F mode			5.15	5.14										
Variable se	lector 1		12.08 to	o 12.15										
Variable se	lector 2		12.28 to	o 12.35										
Velocity fee	ed forward		1.39	1.40										
Voltage cor	ntroller		5.31											
Voltage mo	de		5.14	5.17	5.23	5.15								
Voltage rat	•		11.33	5.09	5.05									
Voltage su	oply		6.44	6.46	5.05									
Warning			10.19	10.12	10.17	10.18 [·]	10.40							
Zero speed	l indicator l	oit	3.05	10.03										

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Parameter ranges and variable maximums:

The two values provided define the minimum and maximum values for the given parameter. In some cases the parameter range is variable and dependant on either:

- other parameters
- the drive rating
- drive mode
- or a combination of these

The values given in Table 11-4 are the variable maximums used in the drive.

Table 11-4	Definition of parameter ranges & variable maximums
------------	--

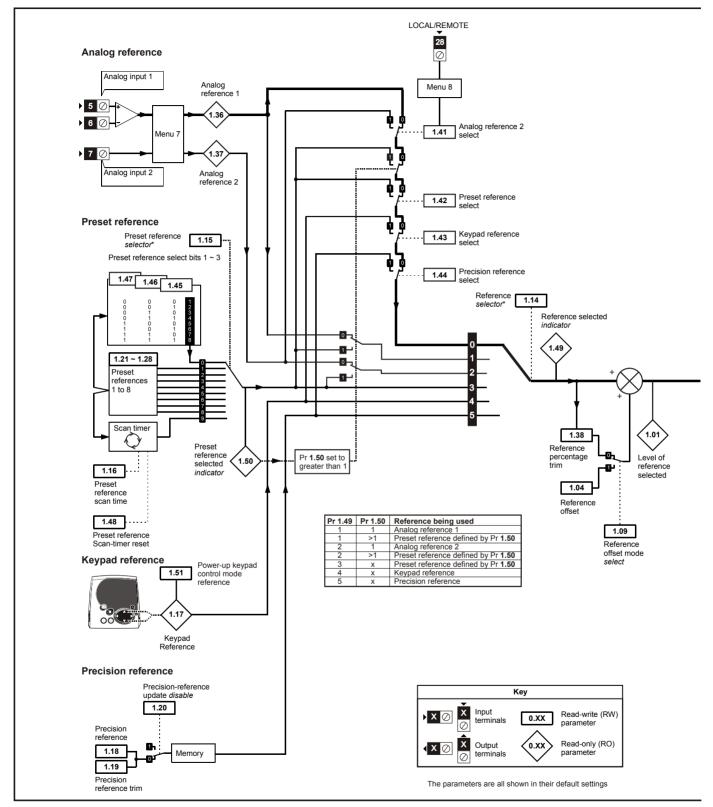
Maximum	Definition
SPEED_FREQ_MAX [Open-loop 3000.0Hz, Closed-loop vector and Servo 40000.0rpm]	Maximum speed (closed-loop mode) reference or frequency (open-loop mode) reference If Pr 1.08 = 0: SPEED_FREQ_MAX = Pr 1.06 If Pr 1.08 = 1: SPEED_FREQ_MAX is Pr 1.06 or – Pr 1.07 whichever is the largest (If the second motor map is selected Pr 21.01 is used instead of Pr 1.06 and Pr 21.02 instead of Pr 1.07)
SPEED_LIMIT_MAX [40000.0rpm]	Maximum applied to speed reference limits A maximum limit may be applied to the speed reference to prevent the nominal encoder frequency from exceeding 500kHz (410kHz for software version V01.06.00 and earlier). The maximum is defined by SPEED_LIMIT_MAX (in rpm) = 500kHz x 60 / ELPR = 3.0 x 10 ⁷ / ELPR subject to an absolute maximum of 40,000 rpm. ELPR is equivalent encoder lines per revolution and is the number of lines that would be produced by a quadrature encoder. Quadrature encoder ELPR = number of lines per revolution F and D encoder ELPR = number of lines per revolution / 2 Resolver ELPR = resolution / 4 SINCOS encoder ELPR = number of sine waves per revolution Serial comms encoder ELPR = resolution / 4 This maximum is defined by the device selected with the speed feedback selector (Pr 3.26) and the ELPR set for the position feedback device. In closed-loop vector RFC mode SPEED_LIMIT_MAX = 40,000rpm.
SPEED_MAX [40000.0rpm]	Maximum speed This maximum is used for some speed related parameters in menu 3. To allow headroom for overshoot etc. the maximum speed is twice the maximum speed reference. SPEED_MAX = 2 x SPEED_FREQ_MAX
RATED_CURRENT_MAX [9999.99A]	Maximum motor rated current (Maximum Normal Duty current rating)RATED_CURRENT_MAX = $1.36 \times K_C$.The motor rated current can be increased above K_C up to a level not exceeding $1.36 \times K_C$). (Maximum motorrated current is the maximum normal duty current rating.)The actual level varies from one drive size to another, refer to Table 11-5.
DRIVE_CURRENT_MAX [9999.99A]	Maximum drive current The maximum drive current is the current at the over current trip level and is given by: DRIVE_CURRENT_MAX = K _C / 0.45
AC_VOLTAGE_SET_MAX [690V]	Maximum output voltage set-pointDefines the maximum motor voltage that can be selected.200V drives: 240V, 400V drives: 480V575V drives: 575V, 690V drives: 690V
AC_VOLTAGE_MAX [930V]	Maximum AC output voltageThis maximum has been chosen to allow for maximum AC voltage that can be produced by the drive including quasi-square wave operation as follows:AC_VOLTAGE_MAX = 0.78 x DC_VOLTAGE_MAX 200V drives: 325V, 400V drives: 650V, 575V drives: 780V, 690V drives: 930V
DC_VOLTAGE_SET_MAX [1150V]	Maximum DC voltage set-point200V rating drive: 0 to 400V, 400V rating drive: 0 to 800V575V rating drive: 0 to 955V, 690V rating drive: 0 to 1150V
DC_VOLTAGE_MAX [1190V]	Maximum DC bus voltage The maximum measurable DC bus voltage. 200V drives: 415V, 400V drives: 830V, 575V drives: 990V, 690V drives: 1190V

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
	Maximu	m						Definition	n				
MOTOR1_([1000.0%]			This Oper Ma cur Wher The M maxin Moto PF is Clos Ma cur Moto $\phi_1 =$ Guidu PF is Serv Ma cur Wher The M maxin Moto	maximum Loop ximum rent limit re: Maximum num Hea r rated cu r rated cu r rated cu r rated cu r rated cu cos-1(PF e for moru- motor ra o ximum rent limit re: Maximum rent limit re: Maximum rent limit re: Maximum rent limit re: Maximum rent limit re: Maximum rent limit	a current lii $= \sqrt{\left[\begin{array}{c} current is \\ vy Duty cu \\ urrent is giv ted power vector = \sqrt{\left[\begin{array}{c} current is e \\ vy Duty cu \\ urrent is giv) - \phi_2. This e informati ted power = \left[\begin{array}{c} M. \\ Mo \\ current is e \\ vy Duty cu \\ urrent is e \\ vy Duty cu \\ vy Duty cu \\ urrent is e \\ vy Duty cu $	mit setting Maxim Motor ra either (1.5 rrent rating ven by Pr 4 factor give <u>Maxim</u> Motor ra either (1.75 rrent rating ven by Pr 4 s is measu on regardi factor give aximum cu tor rated co either (1.75	$\frac{\text{um current}}{\text{PF}}$ $x K_{C} \text{ when figure by Pr}$ 5.07 $\frac{\text{cm current}}{\text{cos}}$ $\frac{\text{cm current}}{\text{cos}}$ $\frac{\text{cm current}}{\text{cos}}$ $\frac{\text{cm current}}{\text{cos}}$ $\frac{\text{cm current}}{\text{cos}}$ $\frac{\text{cm current}}{\text{cos}}$ $\frac{\text{cm current}}{\text{cm current}}$ $\frac{1}{\text{cm current}}$ $\frac{1}{\text{cm current}}$ $\frac{1}{\text{cm current}}$	$\frac{ap 1}{num applied f}$ $\frac{1}{2}^{2} + PF^{2} - \frac{1}{2}$ the motor rate 11.32, otherwork $\frac{1}{2}^{2} + \cos(\varphi_{1})$ $\frac{1}{2}^{2} + \cos(\varphi_{1})$ the motor rate 11.32, otherwork rive during ar	to the curr $\begin{bmatrix} 1 \\ \\ \end{bmatrix} \times 100$ ed current s wise it is (1) $p^2 - 1 \end{bmatrix} \times 1$ ed current vise it is (1) n autotune ed current	set in Pr 5 I.1 x Norm 100% set in Pr 8 See Men set in Pr 8	5.07 is les bal Duty ra 5.07 is les al Duty ra nu 4 in th 5.07 is les	s than or en ating). ss than or e ting). e <i>Advance</i>	qual to the qual to the <i>d User</i>
MOTOR2_0 [1000.0%]	CURRENT	_LIMIT_MA	X This The f exce	maximun ormulae ot that Pr	for MOTO 5.07 is rej	mit setting R2_CURR placed with	ENT_LIMIT_ n Pr 21.07 a	a p 2 num applied t _MAX are the nd Pr 5.10 is	e same for	MOTOR	1_CURRI		•
TORQUE_ [1000.0%]	PROD_CU	IRRENT_M	AX This MOT	is used a	s a maxim RRENT_L		que and torq	ue producing 2_CURREN				which mot	or map is
USER_CUI [1000.0%]	RRENT_M	AX	The u scalir MOT	user can and the ser can and the ser can and the series of	select a m alog I/O wit RRENT_L	aximum fo th Pr 4.24 .	This maxim (depending	r rque referenc um is subject on which mo	to a limit of	of MOTOF	R1_CURF		
POWER_M [9999.99kV			The r maxii S	naximum mum AC Software V	output vol /01.07.01	s been cho tage, maxi and earlie	mum control r: POWER_	v for the maxi lled current a MAX = $\sqrt{3} \times 10^{-10}$ MAX = $\sqrt{3} \times 10^{-10}$	nd unity po AC_VOLT	ower facto	or. Theref X x RATE	ore: D_CURRE	ENT x 1.75

The values given in square brackets indicate the absolute maximum value allowed for the variable maximum.

Safety Product Mechanical Electrical Getting Basic Running the parameters Optimization SMARTCARE	Onboard PLC parameters Data Diagnostics UL Listing Information
---	--

Table 11-5 Maximum motor rated current


Model	κ _c	Maximum Heavy Duty current rating (Pr 11.32) A	Maximum Normal Duty current rating A
SP64X1	154.2	180	205
SP64X2	180	210	236
SP74X1	205.7	238	290
SP74X2	248.5	290	350
SP84X1	293	335	389
SP84X2	342	389	450
SP84X3	391	450	545
SP84X4	472	545	620
SP94X1	586	620	690
SP94X2	586	690	790
SP94X3	684	790	900
SP94X4	782	900	1010
SP94X5	944	1010	1164

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

	Product Mechan nformation Installat		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	--	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

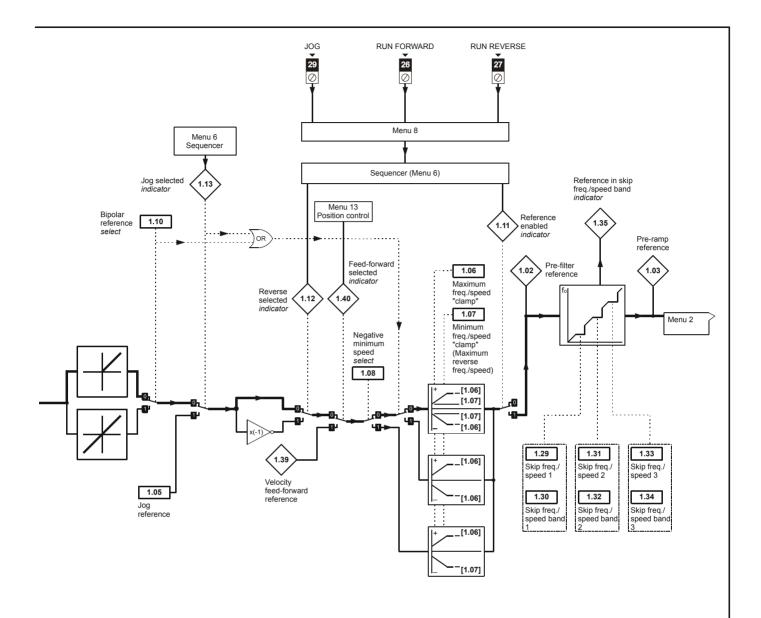

11.1 Menu 1: Frequency / speed reference

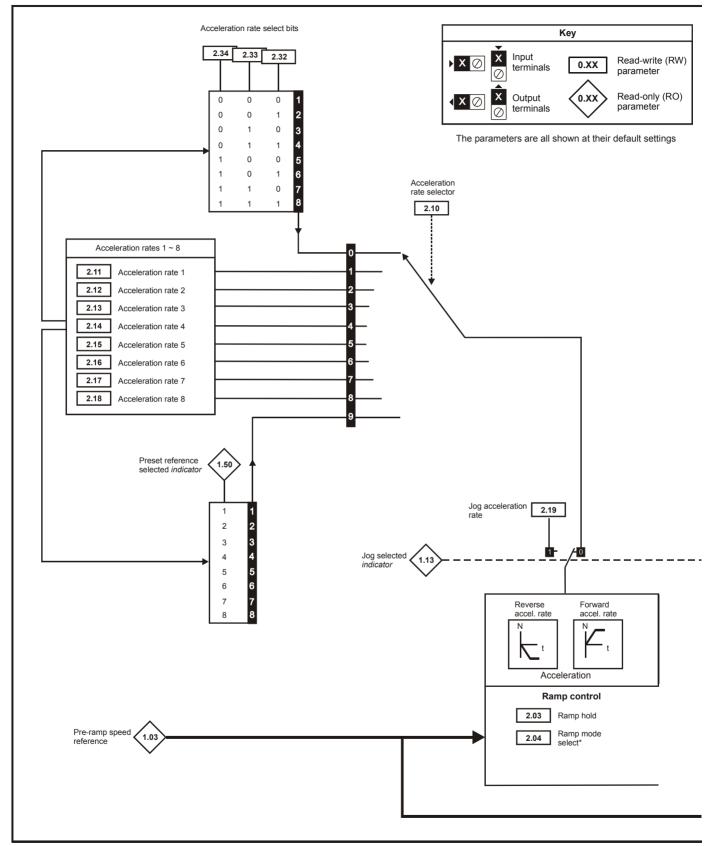
Figure 11-1 Menu 1 logic diagram

*For more information, refer to section 11.21.1 Reference modes on page 224

	Product formation	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	----------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Safety Product Mechanical Electrical Getting Basic Runningthe Information Installation Installation Started parameters motor	Optimization SMARTCARD Onboard PLC parameters Data Diagnostics Information
--	--

	Demonster		Ran	ge(≎)		Default(⇔)		1		T	_		
	Parameter		OL	CL	OL	VT	sv			Тур	e		
1.01	Frequency / speed reference selected		±SPEED_FRE	EQ_MAX Hz/rpm					Bi	I	NC	PT	
1.02	Pre-skip filter reference		±SPEED_FRE	EQ MAX Hz/rpm				RO	Bi		NC	PT	
1.03	Pre-ramp reference			EQ_MAX Hz/rpm				RO	Bi		NC		
1.04	Reference offset		±3,000.0Hz	±40,000.0 rpm		0.0		RW	Bi		-		US
1.05	Jog reference	{0.23}	0 to 400.0 Hz	0 to 4,000.0 rpm		0.0		RW	Uni				US
1.06	Maximum reference clamp	{0.02 }	0 to 3,000.0 Hz	SPEED_LIMIT_MAX rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1,800.0		RW	Uni				US
1.07	Minimum reference clamp	{0.01}	±3,000.0 Hz	±SPEED_LIMIT_MAX rpm		0.0		RW	Bi			PT	US
1.08	Negative minimum reference clamp enable		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
1.09	Reference offset select		• •	or On (1)		OFF (0)		RW	Bit				US
1.10	Bipolar reference enable	{0.22 }) or On (1)		OFF (0)		RW	Bit				US
1.11	Reference enabled indicator			or On (1)				RO	Bit		NC		
1.12	Reverse selected indicator			or On (1)				RO	Bit		NC		
1.13	Jog selected indicator		• •	or On (1) 2.Pr (2), Pr (3), PAd (4),				RO	Bit		NC	PI	
1.14	Reference selector	{0.05 }	Pr	c (5)		A1.A2 (0)		RW	Txt				US
1.15	Preset reference selector		0	to 9		0		RW	Uni	\vdash			US
1.16	Preset reference selector timer		0 to -	400.0s		10.0		RW	Uni				US
1.17	Keypad control mode reference		_	EQ_MAX Hz/rpm		0.0		RO	Bi		NC	PT	PS
1.18 1.19	Precision reference coarse Precision reference fine		0.000 to 0.099 Hz	EQ_MAX Hz/rpm 0.000 to 0.099 rpm		0.0		RW RW	Bi Uni				US US
	Precision reference update							-					03
1.20	disable	(0.0.0)	. ,	or On (1)		OFF (0)		RW	Bit		NC		
1.21	Preset reference 1 Preset reference 2	{0.24}		EQ_MAX Hz/rpm EQ_MAX Hz/rpm		0.0		RW RW	Bi Bi				US US
1.22 1.23	Preset reference 2 Preset reference 3	{0.25} {0.26}	-	EQ_MAX Hz/rpm EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.23	Preset reference 4	{0.20} {0.27}	-	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.25	Preset reference 5	{ 0.2 7}		EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.26	Preset reference 6		-	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.27	Preset reference 7		-	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.28	Preset reference 8		-	EQ_MAX Hz/rpm		0.0		RW	Bi				US
1.29	Skip reference 1		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0		RW	Uni				US
1.30	Skip reference band 1		0.0 to 25.0 Hz	0 to 250 rpm	0.5	5		RW	Uni				US
1.31	Skip reference 2		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0		RW	Uni				US
1.32	Skip reference band 2		0.0 to 25.0 Hz	0 to 250 rpm	0.5	5		RW	Uni				US
1.33	Skip reference 3		0.0 to 3,000.0 Hz	0 to 40,000 rpm	0.0	0		RW	Uni				US
1.34	Skip reference band 3		0.0 to 25.0Hz	0 to 250 rpm	0.5	5		RW	Uni				US
1.35	Reference in rejection zone		()	or On (1)				RO	Bit		NC	PT	
1.36	Analog reference 1		-	EQ_MAX Hz/rpm				RO	Bi		NC		
1.37	Analog reference 2		-	EQ_MAX Hz/rpm 0.00%		0.00		RO	Bi		NC		
1.38 1.39	Percentage trim Velocity feed-forward		±10 ±3,000.0 Hz	±40,000.0 rpm		0.00		RW RO	Bi Bi		NC NC	рт	
1.39	Velocity feed-forward select			±40,000.0 rpm) or On (1)				RO	Bit		NC NC		
1.40	Analog reference 2 select) or On (1)		OFF (0)		RW	Bit			11	
1.41	Preset reference select			or On (1)		OFF (0)			Bit		NC		
1.43	Keypad reference select			or On (1)		OFF (0)		RW	Bit		NC		-+
1.44	Precision reference select			or On (1)		OFF (0)		RW	Bit		NC		
1.45	Preset reference 1 select			or On (1)		OFF (0)		RW	Bit		NC		\neg
1.46	Preset reference 2 select		OFF (0)) or On (1)	Ì	OFF (0)		RW	Bit		NC		
1.47	Preset reference 3 select		OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
1.48	Reference timer reset flag		OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
1.49	Reference selected indicator		1	to 5				RO	Uni		NC	PT	
1.50	Preset reference selected indicator		1	to 8				RO	Uni		NC	PT	
1.51	Power-up keyboard control mode reference		rESEt (0), LA	St (1), PrS1 (2)		rESEt (0)		RW	Txt				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

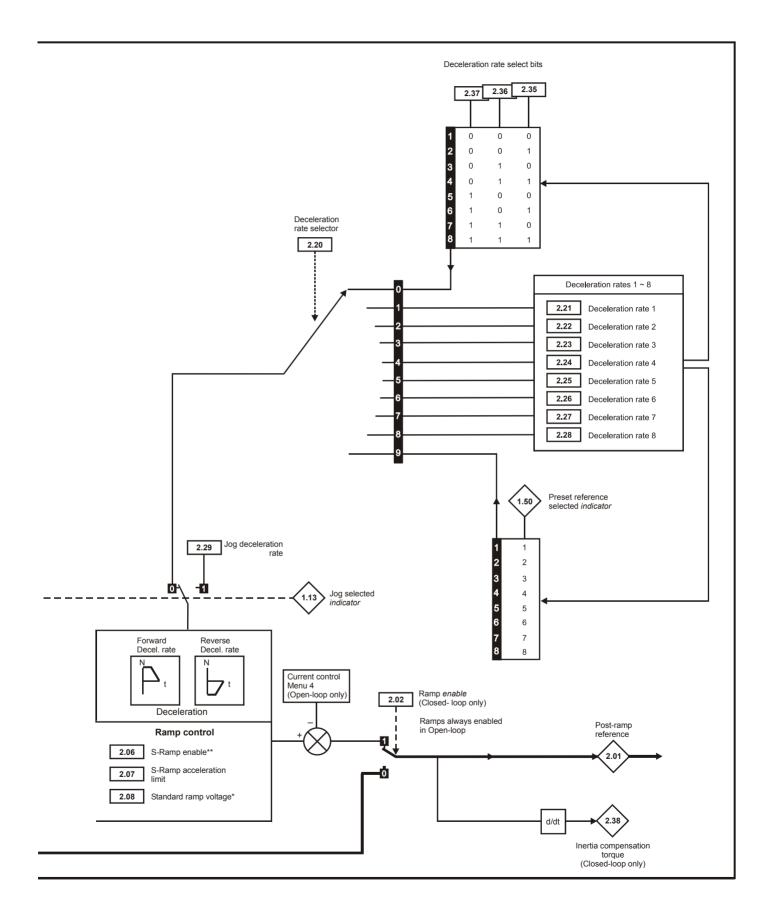
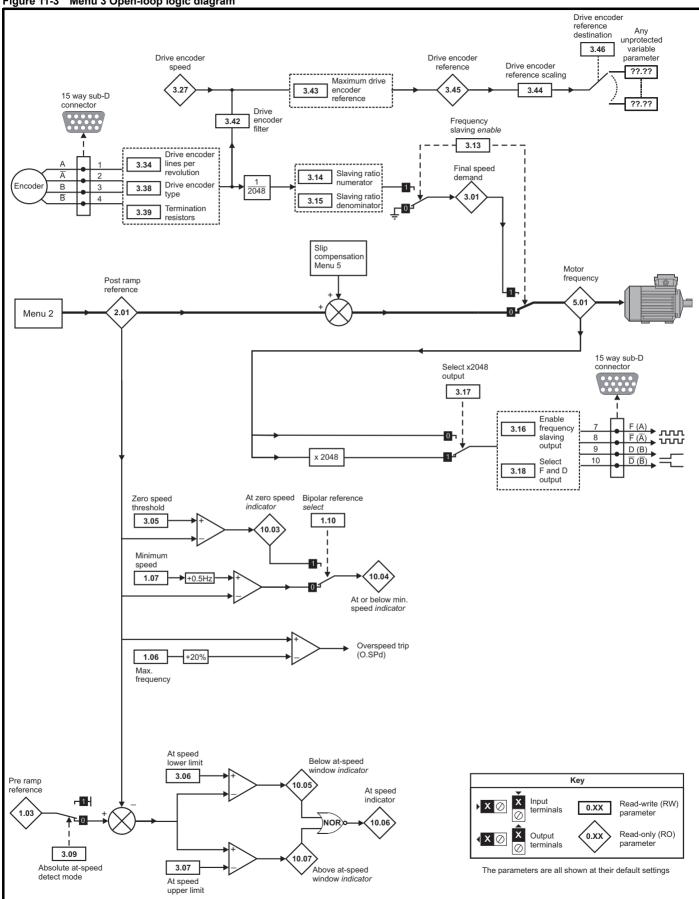

11.2 Menu 2: Ramps

Figure 11-2 Menu 2 logic diagram

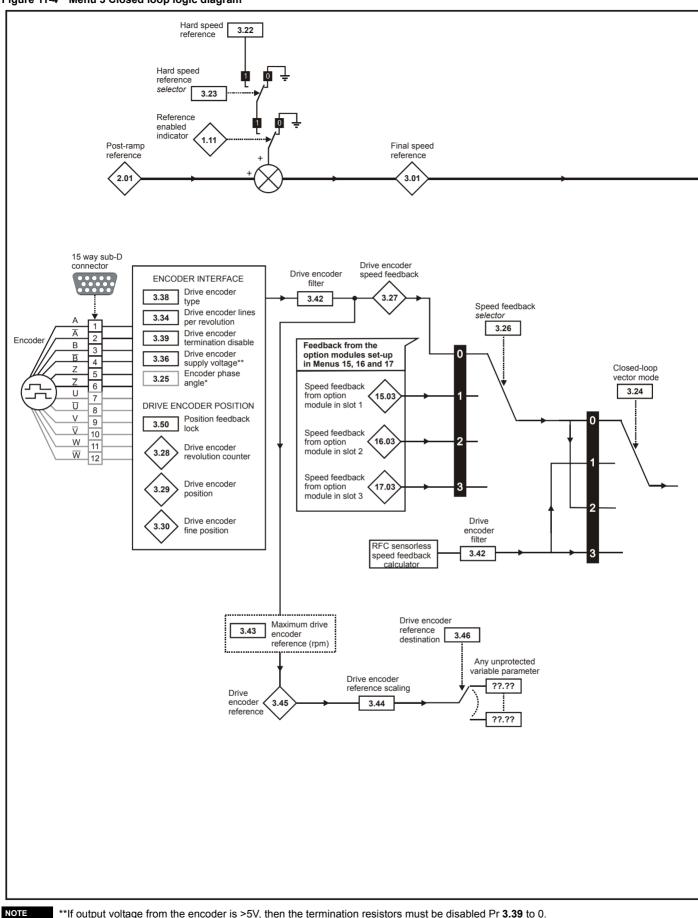
*For more information, refer to section 11.21.2 *Braking Modes* on page 225. **For more information, refer to section 11.21.3 *S ramps* on page 225.

	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------


Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimization	on SMARTCARD Onboard PLC Advanced parameters Data Diagnostics UL Listing Information
---	--

	Deverseter		Rang	ge(‡)		Default(⇔)				T		
	Parameter		OL	CL	OL	VT	sv			Туре		
2.01	Post ramp reference		±SPEED_FRE	Q_MAX Hz/rpm				RO	Bi	N	PT	
2.02	Ramp enable	{0.16}		OFF (0) or On (1)			(1)	RW	Bit			US
2.03	Ramp hold			or On (1)		OFF (0)		RW	Bit			US
2.04	Ramp mode select	{0.15 }	FASt (0) Std (1) Std.hV (2)	FASt (0) Std (1)		Std (1)		RW	Txt			US
2.06	S ramp enable		OFF (0)	or On (1)		OFF (0)		RW	Bit			US
2.07	S ramp acceleration limit		0.0 to 300.0 s ² /100Hz	0.000 to 100.000 s ² /1000rpm	3.1	1.500	0.030	RW	Uni			US
2.08	Standard ramp voltage		0 to DC_VOLTA	GE_SET_MAX V	400	200V drive: 37 V drive: EUR> USA> 575V drive: 89 690V drive: 107	750 775 5	RW	Uni	R/		US
2.10	Acceleration rate selector		01	to 9		0		RW	Uni			US
2.11	Acceleration rate 1	{0.03}	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.12	Acceleration rate 2		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.13	Acceleration rate 3		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.14	Acceleration rate 4		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.15	Acceleration rate 5		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.16	Acceleration rate 6		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.17	Acceleration rate 7		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.18	Acceleration rate 8		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	5.0	2.000	0.200	RW	Uni			US
2.19	Jog acceleration rate		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	0.2		000	RW	Uni			US
2.20	Deceleration rate selector			to 9		0	1	RW	Uni			US
2.21	Deceleration rate 1	{0.04}	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.22	Deceleration rate 2		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.23	Deceleration rate 3		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.24	Deceleration rate 4		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.25	Deceleration rate 5		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.26	Deceleration rate 6		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.27	Deceleration rate 7		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.28	Deceleration rate 8		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	10.0	2.000	0.200	RW	Uni			US
2.29	Jog deceleration rate		0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1,000rpm	0.2		000	RW	Uni			US
2.32	Acceleration select bit 0		()	or On (1)		OFF (0)		RW	Bit	N		
2.33	Acceleration select bit 1			or On (1)		OFF (0)		RW	Bit	NO		\square
2.34	Acceleration select bit 2		()	or On (1)		OFF (0)		RW	Bit	N		\square
2.35	Deceleration select bit 0		()	or On (1)		OFF (0)		RW	Bit	NO		\vdash
2.36	Deceleration select bit 1		,	or On (1)		OFF (0)		RW	Bit	NO		\vdash
2.37 2.38	Deceleration select bit 2 Inertia compensation torque			or On (1) ± 1,000.0 %		OFF (0)		RW RO	Bit Bi	NO) PT	+
2.30	mentia compensation torque			I 1,000.0 %				кU	ы	INC	121	1

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save


Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
monnauon	information	motaliation	matanation	Otaricu	parameters	motor		operation	1 20	parameters	Data		mormation

11.3 Menu 3: Frequency slaving, speed feedback and speed control Figure 11-3 Menu 3 Open-loop logic diagram

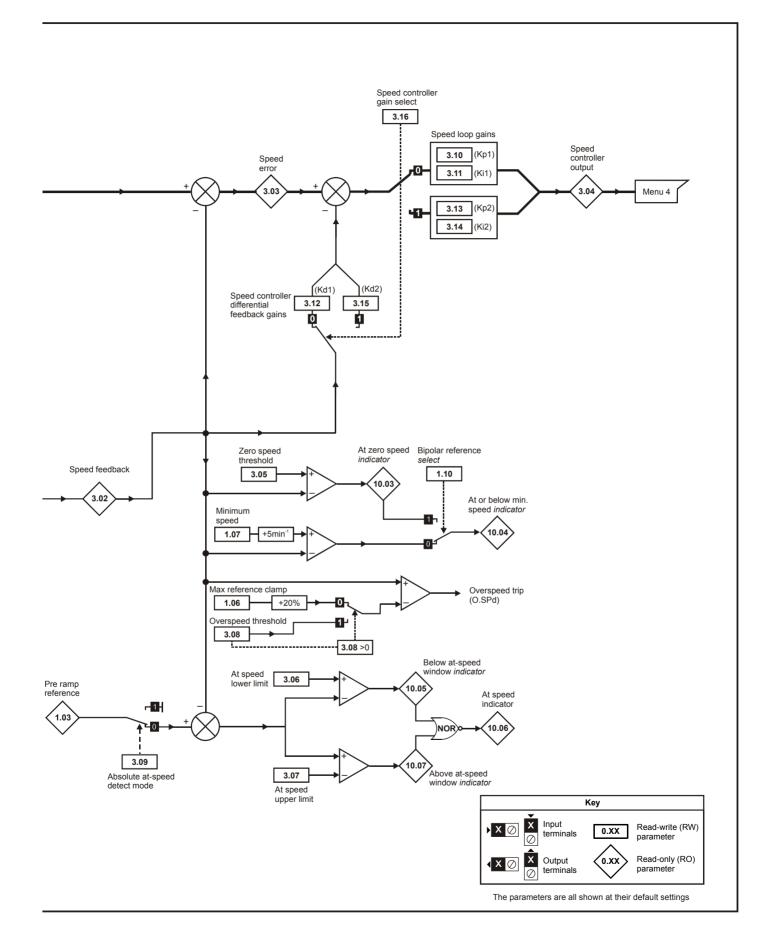

Optimization	RTCARD Onboard Advanced PLC parameters Data Diagnostics UL Listing Information
--------------	--

Figure 11-4 Menu 3 Closed loop logic diagram

**If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0.

Safety Product Mechanical Electrical Getting Basic Runningthe Optimization SMARTCARD Onboard Advanced Technical Diagnostics UL Information Installation Installation Started Basic motor Optimization SMARTCARD Onboard Advanced Technical Diagnostics UL	L Listing formation
---	---------------------

Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Opt	ptimization SMARTCARD operation PLC Advanced parameters Data Diagnostics UL Listing Information
--	---

r		Par	nge(‡)		Default(⇔)						
	Parameter	OL	lge(⇔) CL	OL	VT) SV	-		Ту	ре		
3.01	OL> Frequency slaving demand	±1,000.0 Hz					RO	Bi	FI	NC	PT	
3.01	CL> Final speed reference		±SPEED_MAX rpm				RO	Bi	FI	NC		
3.02	Speed feedback {0.10}		±SPEED_MAX rpm				RO RO	Bi	FI	NC		
3.03	Speed error		±SPEED_MAX rpm					Bi	FI	NC	PT	
3.04	Speed controller output		±Torque_prod_ current max %				RO	Bi	FI	NC	PT	
3.05	Zero speed threshold	0.0 to 20.0 Hz	0 to 200 rpm	1.0		5	RW	Uni				US
3.06	At speed lower limit	0.0 to 3,000.0 Hz	0 to 40,000 rpm	1.0	5		RW	Uni				US
3.07	At speed upper limit	0.0 to 3,000.0 Hz	0 to 40,000 rpm	1.0			RW	Uni				US
3.08	Overspeed threshold {0.26}		0 to 40,000 rpm			0	RW	Uni				US
3.09	Absolute 'at speed' detect	OFF (0) or On (1)		OFF (0)		RW	Bit				US
3.10	Speed controller proportional gain (Kp1) {0.07}		0.0000 to 6.5535 1/rad s ⁻¹		0.0300	0.0100	RW	Uni				US
3.11	Speed controller integral gain (Ki1) {0.08}		0.00 to 655.35 s/rad s ⁻¹		0.10	1.00	RW	Uni				US
3.12	Speed controller differential feedback gain {0.09}						RW	Uni				US
-	OL> Enable frequency slaving	OFF (0) or On (1)	s /rau s	OFF (0)			RW	Bit				US
3.13	CL> Speed controller proportional gain		0.0000 to 6.5535	011 (0)								
••	(Kp2)		1/rad s ⁻¹		0.0300	0.0100	RW	Uni				US
3.14	OL> Slaving ratio numerator	0.000 to 1.000		1.000			RW	Uni				US
3.14	CL> Speed controller integral gain (Ki2)		0.00 to 655.35 1/rad		0.10							US
	OL> Slaving ratio denominator	0.001 to 1.000		1.000			RW	Uni				US
3.15	CL> Speed controller differential feedback gain (Kd2)		0.00000 to 0.65535 s		0.0	0000	RW	Uni				US
	OL> Enable frequency slaving output	OFF (0) or On (1)		OFF (0)			RW	Bit				US
3.16	CL> Speed controller gain select		OFF (0) or On (1)		OF	F (0)	RW	Bit				US
	OL> Select x2048 output	OFF (0) or On (1)		On (1)	0.	. (0)	RW	Bit				US
3.17	CL> Speed controller set-up method	0 to 3 0				0	RW	Uni				US
	OL> Select F and D frequency slaving	OFF (0) or On (1)		OFF (0)			RW	Bit				US
3.18	output						RVV	DIL				03
5.10	CL> Motor and load inertia		0.00000 to 90.00000 kg m ²	0.00000		0000	RW	Uni				US
3.19	Compliance angle		0.0 to 359.9 °			.0	RW	Uni				US
3.19	Bandwidth		0.0 to 255 Hz			10	RW	Uni				US
3.20	Damping factor		0.0 to 10.0				RW	Uni				US
		+SPEED_EREO										
3.22	Hard speed reference	MAX rpm 0.0					RW	Bi				US
3.23	Hard speed reference selector		OFF (0) or On (1)			F (0)	RW	Bit				US
3.24	Closed-loop vector mode		VT> 0 to 3		0		RW	Uni			<u> </u>	US
3.25	Encoder phase angle* {0.43}		SV> 0.0 to 359.9 °			0.0	RW	Uni			<u> </u>	US
3.26	Speed feedback selector		drv (0), SLot1 (1), SLot2 (2), SLot3 (3)		dry	/ (0)	RW	Txt				US
3.27	Drive encoder speed feedback		00.0 rpm				RO	Bi		NC		1
3.28	Drive encoder revolution counter	,	85 revolutions				RO	Uni		NC		L
3.29	Drive encoder position {0.11}	,	¹⁶ ths of a revolution				RO	Uni		NC		
3.30	Drive encoder fine position	0 to 65,535 1/2 ³	² nds of a revolution				RO	Uni	FI	NC	PT	
3.31	Drive encoder marker position reset disable	OFF (0) or On (1)		OFF (0)		RW	Bit				US
3.32	Drive encoder marker flag	OFF (0) or On (1)		OFF (0)		RW	Bit		NC		
3.33	Drive encoder turn bits / Linear encoder		to 255		16		RW	Uni				US
3.34	comms to sine wave ratio Drive encoder lines per revolution {0.27}		50,000	10)24	4096	RW	Uni				US
	Drive encoder single turn comms bits /		,			4090						
3.35	Linear encoder comms bits / Marker mode	0 to	32 bits		0		RW	Uni		L		US
3.36	Drive encoder supply voltage**		/ (1), 15V (2)		5V (0)		RW	Txt				US
3.37	Drive encoder comms baud rate	1000 (5), 1500 (00 (2), 400 (3), 500 (4), (6), 2000 (7) kBaud		300 (2)		RW	Txt				US
3.38	Drive encoder type	Fd.SErvo (4), F SC.Hiper (7), End	r (2), Ab.SErvo (3), r.SErvo (5), SC (6), IAt (8), SC.EndAt (9), SC.SSI (11)	Ab	(0)	Ab.SErvo (3)	RW	Txt				US
3.39	Drive encoder termination select / Rotary encoder select / Comms only encoder mode		to 2		1	•	RW	Uni				US
3.40	Drive encoder error detection level	Bit 0 (LSB) = Wire break detect Bit 1 = Phase error detect Bit 2 (MSB) = SSI power supply bit monitor Value is binary sum			or 0 1			Uni				US
3.41	Drive encoder auto-configuration / SSI binary format select	OFF (0) or On (1)		OFF (0)		RW	Bit				US

		Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

	Parameter	Rar	nge(\$)		Default(⇔)						
	Falameter	OL	CL	OL	VT	SV			IJ	ре		
3.42	Drive encoder filter	0 (0), 1 (1), 2 (2),	4 (3), 8 (4), 16 (5) ms		0		RW	Txt				US
3.43	Maximum drive encoder reference	0 to 4	0,000 rpm	1500 3000				Uni				US
3.44	Drive encoder reference scaling	0.000) to 4.000		RW	Uni				US		
3.45	Drive encoder reference	±1	00.0%			RO	Bi	FI	NC	PT		
3.46	Drive encoder reference destination	Pr 0.0	0 to 21.50		RW	Uni		DE	PT	US		
3.47	Re-initialise position feedback	OFF (0)) or On (1)		RW	Bit		NC				
3.48	Position feedback initialised	OFF (0)) or On (1)				RO	Bit		NC	PT	
3.49	Full motor object electronic nameplate transfer	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
3.50	Position feedback lock	OFF (0			RW	Bit		NC				

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

*Encoder phase angle (servo mode only)

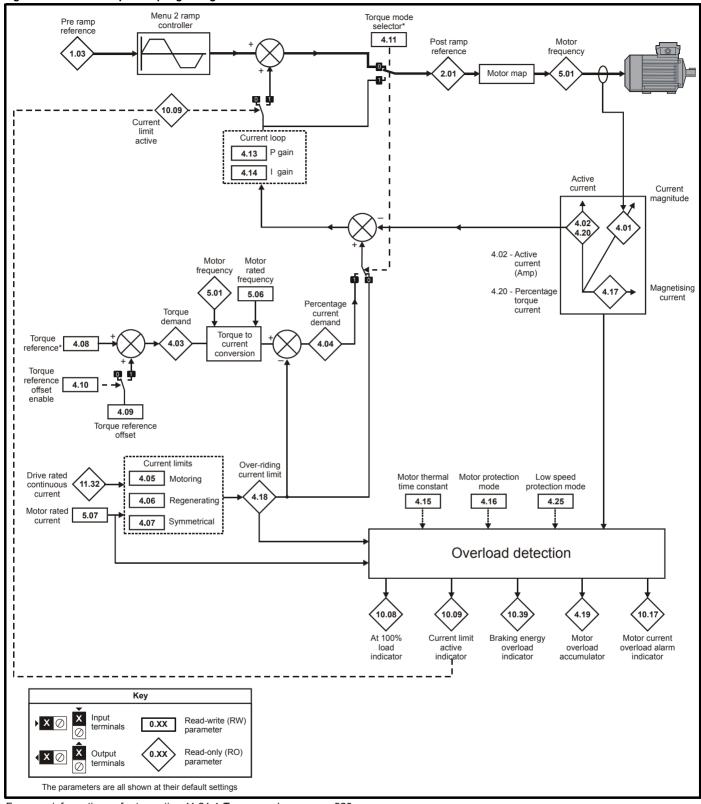
With drive software version V01.08.00 onwards, the encoder phase angles in Pr 3.25 and Pr 21.20 are copied to the SMARTCARD when using any of the SMARTCARD transfer methods.

With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr 3.25 and Pr 21.20 are only copied to the SMARTCARD when using either Pr 0.30 set to Prog (2) or Pr xx.00 set to 3yyy.

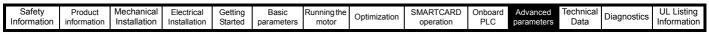
This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives.

Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr **3.25** (or Pr **21.20**). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr **xx.00** set to 4yyy is used,

then the encoder phase angles in Pr 3.25 and Pr 21.20 are not copied to the SMARTCARD. Therefore, Pr 3.25 and Pr 21.20 in the destination would not be changed during a transfer of this data block from the SMARTCARD.


NOTE

**If output voltage from the encoder is >5V, then the termination resistors must be disabled Pr 3.39 to 0.


Safety Product Mechanical Electrical Getting Basic Running the Optimization Optimization	SMARTCARD Onboard Advanced Technical Diagnostics UL Listing operation PLC parameters Data Diagnostics Information
--	---

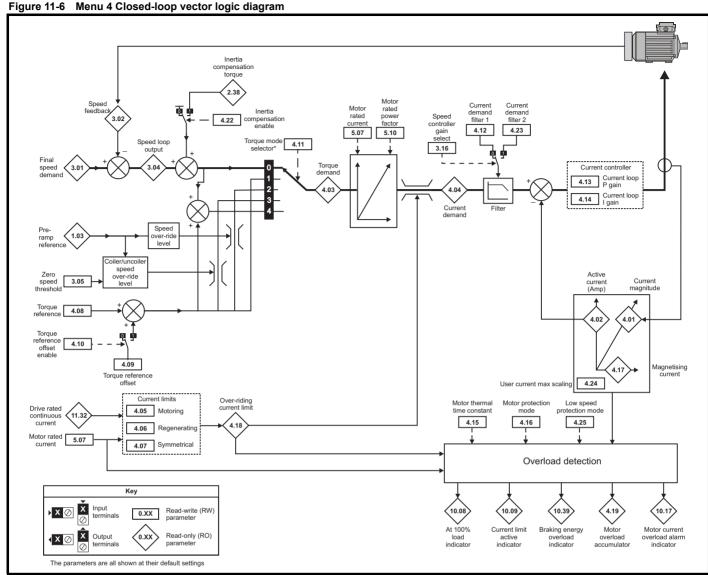
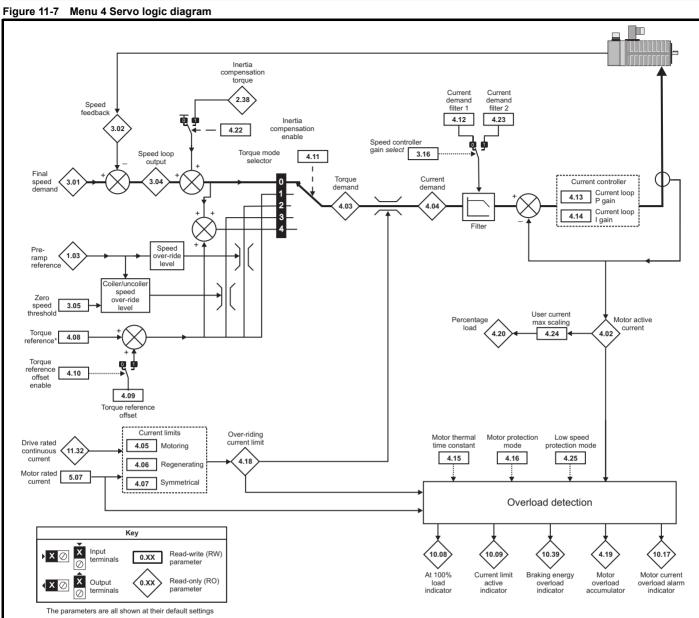

11.4 Menu 4: Torque and current control

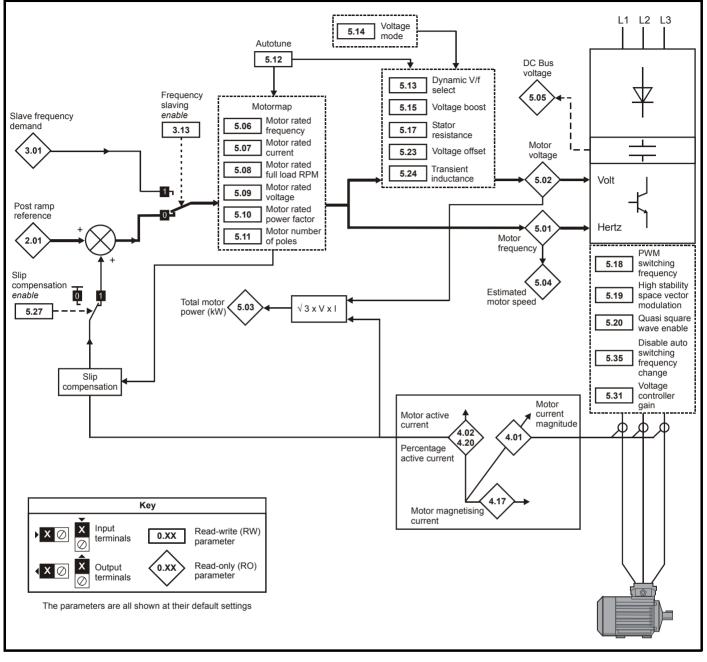
Figure 11-5 Menu 4 Open loop logic diagram


For more information, refer to section 11.21.4 Torque modes on page 226.

*For more information, refer to section 11.21.4 Torque modes on page 226.

*For more information, refer to section 11.21.4 Torque modes on page 226.

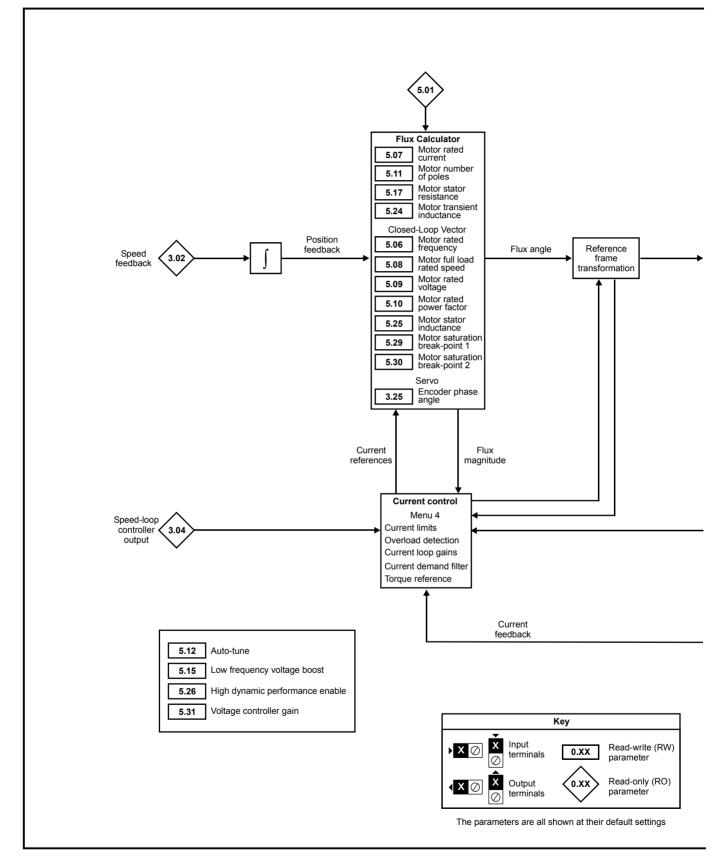
	Onboard Advanced Technical Diagnostics UL Listing Information
--	---

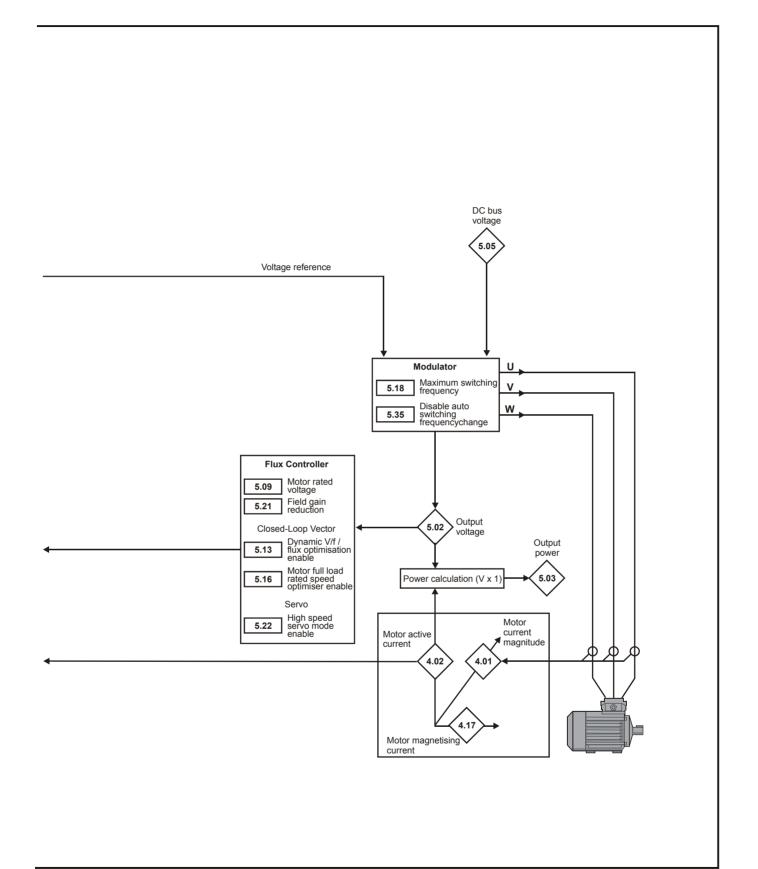

	Parameter		Ran	ge(\$)		Default(⇔)				Ти	pe		
	Falailletei		OL	CL	OL	VT	SV			чy	he		
4.01	Current magnitude	{0.12}	0 to DRIVE_CU	JRRENT_MAX A				RO	Uni	FI	NC	PT	
4.02	Active current	{0.13}	±DRIVE_CUF	RRENT_MAX A				RO	Bi	FI	NC	ΡT	
4.03	Torque demand		±TORQUE_PROD	_CURRENT_MAX %				RO	Bi	FI	NC	ΡT	
4.04	Current demand		±TORQUE_PROD	_CURRENT_MAX %				RO	Bi	FI	NC	ΡT	
4.05	Motoring current limit		0 to MOTOR1_CUR	RENT_LIMIT_MAX %	138.1	165.7	150.0	RW	Uni		RA		US
4.06	Regen current limit		0 to MOTOR1_CUR	RENT_LIMIT_MAX %	138.1	165.7	150.0	RW	Uni		RA		US
4.07	Symmetrical current limit	{0.06 }	0 to MOTOR1_CUR	RENT_LIMIT_MAX %	138.1	165.7	150.0	RW	Uni		RA		US
4.08	Torque reference		±USER_CUR	RENT_MAX %		0.00	•	RW	Bi				US
4.09	Torque offset		±USER_CUR	RENT_MAX %		0.0		RW	Bi				US
4.10	Torque offset select		OFF (0)	or On (1)		OFF (0)		RW	Bit				US
4.11	Torque mode selector	{0.14 }	0 to 1	0 to 4		0		RW	Uni				US
4.12	Current demand filter 1	{0.17}		0.0 to 25.0 ms		0	0.0	RW	Uni				US
4.13	Current controller Kp gain	{0.38 }	0 to 3	30,000	20	200V d 400V d 575V d 690V d	RW	Uni				US	
4.14	Current controller Ki gain	{0.39 }	0 to 3	30,000	40	400V dr 575V dr	ive: 1000 ive: 2000 ive: 2400 ive: 3000	RW	Uni				US
4.15	Thermal time constant	{0.45 }	0.0 to	3000.0	89.0	89.0 20.0			Uni				US
4.16	Thermal protection mode		0	to 1		RW	Bit				US		
4.17	Reactive current		±DRIVE_CUF	RRENT_MAX A		RO	Bi	FI	NC	ΡT			
4.18	Overriding current limit		±TORQUE_PROD	_CURRENT_MAX %				RO	Uni		NC	ΡT	
4.19	Overload accumulator		0 to 1	00.0 %				RO	Uni		NC	PT	
4.20	Percentage load		±USER_CUR	RENT_MAX %				RO	Bi	FI	NC	ΡT	
4.22	Inertia compensation enable			OFF (0) or On (1)		OF	F (0)	RW	Bit				US
4.23	Current demand filter 2			0.0 to 25.0 ms		0	0.0	RW	Uni				US
4.24	User current maximum scaling		0.0 to TORQUE_PRO	D_CURRENT_MAX %	165.0	17	5.0	RW	Uni		RA		US
4.25	Low speed thermal protection mode		OFF (0)	or On (1)	OFF (0)				Bit				US
4.26	Percentage torque		±USER_CURRENT_ MAX %					RO	Bi	FI	NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Information		lechanical nstallation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	--	------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

11.5 Menu 5: Motor control

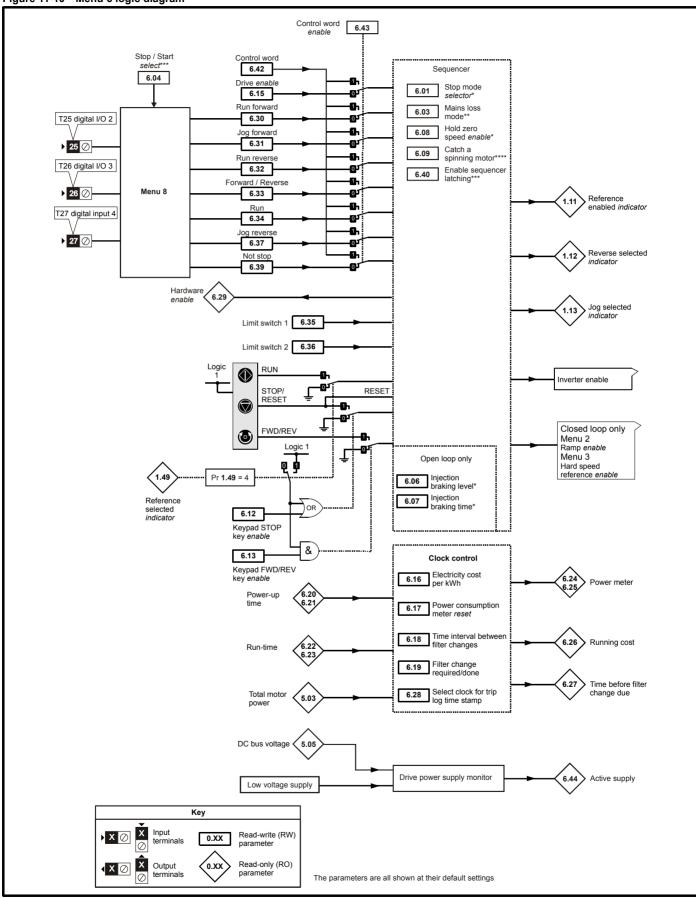

Figure 11-8 Menu 5 Open-loop logic diagram


Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

SafetyProductMechanicalElectricalGettingBasicRunning the motorOptimizationSMARTCARDOnboardAdvancedTechnical parametersData	Diagnostics UL Listing Informatio	Diagnostics
--	--------------------------------------	-------------

Figure 11-9 Menu 5 Closed-loop logic diagram

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------


Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

				R	ang	e(‡)	T		Defau	ult(⇔)				_			
	Parameter			OL	Ī	CL		OL		VT	SV			Ту	pe		
5.01	Output frequency	{ 0.1 1	}	±SPEED_FREQ_	-	±1,250.0 Hz						RO	Bi	FI	NC	PT	
5.02	Output voltage	(0.1.	.,	MAX Hz	volt	age max V	_					RO	Uni	FI	NC		
5.02	Output voltage		_		_	max kW	_					RO	Bi		NC		
5.03	Motor rpm	{0.10)}	±180,000 rpm								RO	Bi		NC		
5.05	D.C bus voltage	(0	- J	· · ·) vol	tage_max V						RO	Uni		NC		
5.06	Rated frequency	{0.47	7}	0 to 3.000 Hz		VT> 0 to 1,250.0 Hz	E	EUR> 50.	0. USA	> 60.0	<u> </u>	RW	Uni				US
5.07	Motor rated current	{0.40		0 to Rate	ed cu	irrent max A			,	urrent [1	1.32]	RW	Uni		RA		US
5.08	Rated load rpm / rated spee	d { 0.4	5}	0 to 180,000 rpm	-	 0.00 to 40,000.00 rpm		R> 1,500 A> 1,800	USA>	1,770.00		RW	Uni				US
5.09	Rated voltage	{0.44	4}	_		GE_SET_MAX V		400V driv	ve: EUR 575V dr	rive: 230 > 400, U rive: 575 rive: 690	SA> 460		Uni		RA		US
5.10	Rated power factor	{0.4 3	3}	OL & VT	> 0.	000 to 1.000		0	.850			RW	Uni		RA		US
5.11	Number of motor poles	{0.42	2}	Auto to 1	120 F	Pole (0 to 60)		Αι	uto (0)		6 POLE (3)	RW	Txt				US
5.12	Autotune	{0.40)}	0 to 2		VT> 0 to 4 SV> 0 to 6			(0		RW	Uni		NC		
5.13	Dynamic V/F / flux optimise select	{0.09	9}	OFF (0) or On (1))	VT> OFF (0) or On (1)		OI	FF (0)			RW	Bit				US
5.14	Voltage mode select	{0.07	7} F	Ur_S (0), Ur (1), ⁼ d (2), Ur_Auto (3 Ur_I (4), SrE (5)),	0)//s more (0)	Ľ	Jr_I (4)				RW	Txt				US
	Action on enable					SV> nonE (0), Ph EnL (1), Ph Init (2)					nonE(0)		Txt				US
5.15	Low frequency voltage boos			0.0 to 25.0 %	of m	otor rated voltage			1.0			RW	Uni				US
5.16	Rated rpm autotune	{0.33	B }			VT> 0 to 2				0		RW	Uni				US
5.17	Stator resistance			0.000 to 65.000 x 10 mΩ						.0	-	RW	Uni		RA		US
5.18	Maximum switching frequency	{ 0.4 ′	}	3 (0), 4 (1), 6 (2) kHz 3 (0) 6 (2)						6 (2)	RW	Txt		RA		US	
5.19	High stability space vector modulation			OFF (0) or On (1)				OFF (0)				RW	Bit				US
5.20	Quasi-square enable		_	OFF (0) or On (1))		C	DFF (0)				RW	Bit				US
5.21	Field gain reduction					OFF (0) or On (1)				OFF	()	RW	Bit				US
5.22	High speed servo mode ena	ible	_	0.01.05.01/	_	SV> OFF (0) or On (1)	_	0.0			0	RW	Bit				US
5.23	Voltage offset			0.0 to 25.0 V			0.0					RW	Uni		RA		US
5.24	Transient inductance (σL_s)			0.000		0.000 mH				000	-	RW	Uni		RA		US
5.25	Stator inductance (L _s)				\	/T> 0.00 to 5,000.00 mH	H		0	.00		RW	Uni		RA		US
5.26	High dynamic performance enable					OFF (0) or On (1)				OFF	(0)	RW	Bit				US
5.27	Enable slip compensation			OFF (0) or On (1))		(On (1)			-	RW	Bit				US
5.28	Field weakening compensation disable					VT> OFF (0) or On (1)			OF	F (0)		RW	Bit				US
5.29	Motor saturation breakpoint	1				VT> 0 to 100% of rated flux				50		RW	Uni				US
5.30	Motor saturation breakpoint	2				VT> 0 to 100% of rated flux				75			Uni				US
5.31	Voltage controller gain				0 to					1		RW	Uni				US
5.32	Motor torque per amp, K _t					VT> 0.00 to 500.00 N m A ⁻¹						RO	Uni				US
						SV> 0.00 to 500.00 N m A ⁻¹					1.60		Uni				US
5.33	Motor volts per 1,000 rpm, k	e -				SV> 0 to 10,000 V					98	RW	Uni			_	US
5.35	Disable auto switching frequency change		OFF (0) or On (1)						OF	= (0)		RW	Bit				US
5.36	Motor pole pitch					.35 mm	1		0.	00		RW	Uni				US
5.37	Actual switching frequency		3 (0), 4 (1), 6 (2), 8 (3), 12 (4), 16 (5), 6 rEd (6), 12 rEd (7)					0.00				RO	Txt		NC	PT	
5.38	Minimal movement phasing	test ang	le			SV> 0.0 to 25.5°					5.0	RW	Uni				US
5.39	Minimal movement phasing test pulse length					SV> 0 to 3					0	RW	Uni				US
5.40	Spin start boost			0.0 to 10.0		VT> 0.0 to 10.0			1.0			RW	Uni				US
RWF	Read / Write RO Read o	nlv	Uni	Unipolar	Bi	Bi-polar	Bit	Bit para	meter	Txt	Text string			_			
	iltered DE Destina		NC	Not copied	RA	Rating dependent	PT	Protecte			User save		S I	Pow	er dov	ND C	ave
	DE Destille		110	Hot copied	1 1/1	Rung dependent		1 1016016	<i>,</i> ,,	00		I F	5	0000			446

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

11.6 Menu 6: Sequencer and clock

Figure 11-10 Menu 6 logic diagram

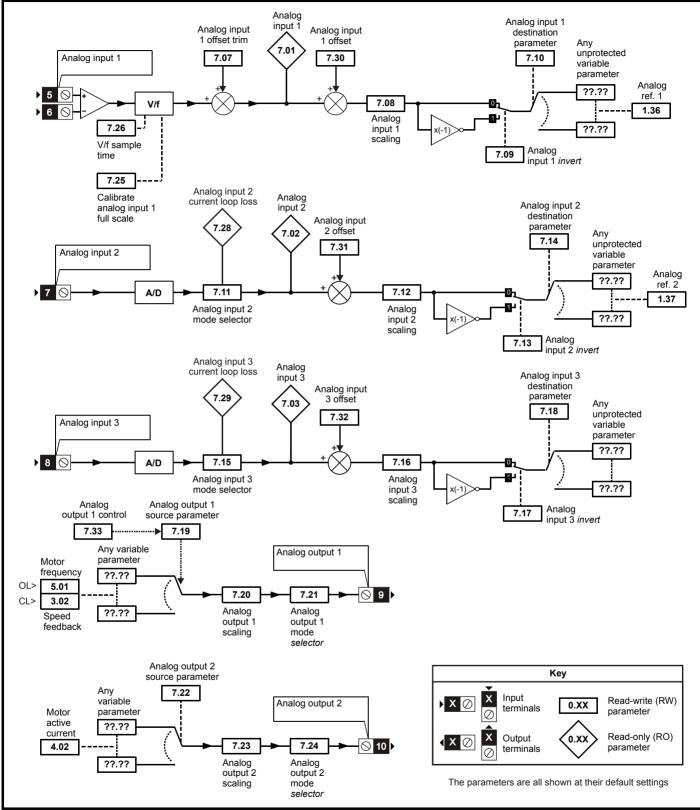
Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimization	on SMARTCARD Onboard Advanced PLC parameters Data Diagnostics Information
---	---

	_		R	ange	(①)			Defau	ılt(⇔)		I		_			
	Parameter		OL		CL		OL		т	SV			Ту	ре		
6.01	Stop mode		COASt (0), rP (1), rP.dcl (2), dcl (3), td.dcl (4), diSAbLE		COASt (0), rP (1), no.rP (2)	T	-	(1)		no.rP (2)	RW	Txt				US
6.03	Line power supply loss mode	9	diS (0), St), ridE.th (2)				(0)	•	RW	Txt				US
6.04	Start / stop logic select			0 to 4	1			4	1		RW	Uni				US
6.06	Injection braking level		0 to 150.0%			1	00.0%				RW	Uni		RA		US
6.07	Injection braking time		0.0 to 25.0s				1.0				RW	Uni				US
6.08	Hold zero speed			(0) or	On (1)		OF	F (0)		On (1)	RW	Bit				US
6.09	Catch a spinning motor	{0.33}	0 to 3		0 to 1		0			1	RW	Uni				US
6.12	Enable stop key			• •	On (1)				= (0)		RW	Bit				US
6.13	Enable forward / reverse key	{0.28}			On (1)			-	= (0)		RW	Bit				US
6.15	Drive enable			<u> </u>	On (1)				(1)		RW	Bit				US
6.16	Electricity cost per kWh				y units per kWh	_)		RW	Uni				US
6.17	Reset energy meter			()	On (1)	_			- (0)		RW	Bit		NC		
6.18	Time between filter changes		0 to	30,00	00 hrs	_		()		RW	Uni				US
6.19	Filter change required / change done			• •	On (1)			OF	= (0)		RW	Bit		NO	PT	
6.20	Powered-up time: years.day	5	0 to 9	364 ye	ars.days	_					RW	Uni		NC	PI	
6.21	Powered-up time: hours.minutes				rs.minutes						RW	Uni		NC		DO
6.22	Run time: years.days			,	ars.days rs.minutes	_					RO	Uni		NC NC	PT	PS PS
6.23 6.24	Run time: hours.minutes Energy meter: MWh			99.9 N							RO RO	Uni Bi			PT	PS PS
6.24	Energy meter: kWh										RO	Bi		NC	PT	PS
6.25	Running cost		±99.99 kWh ±32,000								RO	Bi			PT	г3
6.20	Time before filter change due	2	±32,000 0 to 30,000 hrs								RO	Uni		NC		PS
0.27	Select clock for trip log time	5	,								RU	UIII		NC	FI	
6.28	sampling				On (1)			OFF	- (0)		RW	Bit		NC	пт	US
6.29	Hardware enable				On (1)			RO	Bit		NC NC	PI				
6.30 6.31	Sequencing bit: Run forward Sequencing bit: Jog forward				On (1) On (1)	_		RW RW	Bit Bit		NC					
6.32	Sequencing bit: Run reverse				On (1)	_		RW	Bit		NC					
	Sequencing bit: Forward /		UT	(0) 01		_		-								
6.33 6.34	reverse Sequencing bit: Run			.,	On (1) On (1)	_			= (0) = (0)		RW RW	Bit Bit		NC NC		
6.35	Forward limit switch			()	On (1)	_					RW	Bit		NC		
6.36	Reverse limit switch			. ,	On (1)	OFF (0)					RW	Bit		NC		
6.37	Sequencing bit: Jog reverse			. ,	On (1)	OFF (0) OFF (0)					RW	Bit		NC		
6.39	Sequencing bit: Not stop			. ,	On (1)	-			= (0)		RW	Bit		NC		
6.40	Enable sequencer latching				On (1)	-			= (0)		RW	Bit		110		US
6.41	Drive event flags			to 65,		-)		RW	Uni		NC		
6.42	Control word			to 32,		1)		RW	Uni	-	NC		
	Control word enable				On (1)	1			- (0)		RW			-		US
6.44	Active supply										RO	Bit		NC	PT	
6.45	Force cooling fan to run at fu speed*****	I	OFF (0) or On (1) OFF (0) or On (1)					OF	= (0)		RW					US
6.46	Nominal low voltage supply		48	BV to 9	96V	1		4	8		RW	Uni			PT	US
6.47	Disable line power supply / phase loss detection from input rectifier		OFF (0) or On (1)					48 OFF (0)				Bit				US
6.48	Line powersupply loss ride through detection level		0 to DC_VOLTAGE_SET_MAX V					200V drive: 205, 400V drive: 410, 575V drive: 540, 690V drive: 540				Uni		RA		US
6.49	Disable multi-module drive module number storing on tri	p	OFF (0) or On (1)					OFF (0)				Bit				US
6.50	Drive comms state				ot 2 (2), SLot 3 (3)						RO			NC	PT	
6.51	External rectifier not active		OFF	(0) or	On (1)			OF	- (0)		RW	Bit				
	Pood / Write DO Doord			D:	Pi polor	D:+	Dit nort	motor	T.4	Toxt otring						
	Read / Write RO Read or		Jni Unipolar	Bi	Bi-polar	Bit	Bit para		Txt	Text string			D-	د او م		
FI F	Filtered DE Destinat	ion N	IC Not copied	RA	Rating dependent	PT	Protecte	ed	US	User save	P	S	POW	er dov	vn s	ave

*For more information, refer to section 11.21.5 Stop modes on page 227.

**For more information, refer to section 11.21.6 *Line power supply loss modes* on page 228.

***For more information, refer to section 11.21.7 *Start / stop logic modes* on page 230.


****For more information, refer to section 11.21.8 *Catch a spinning motor* on page 231.

*****The drive thermal model system normally controls the fan speed, however the fan can be forced to operate at full speed if this parameter is set to 1. When this is set to 1 the fan remains at full speed until 10s after this parameter is set to zero. Note that the fan will only run at full speed if the drive is not in a UU condition.

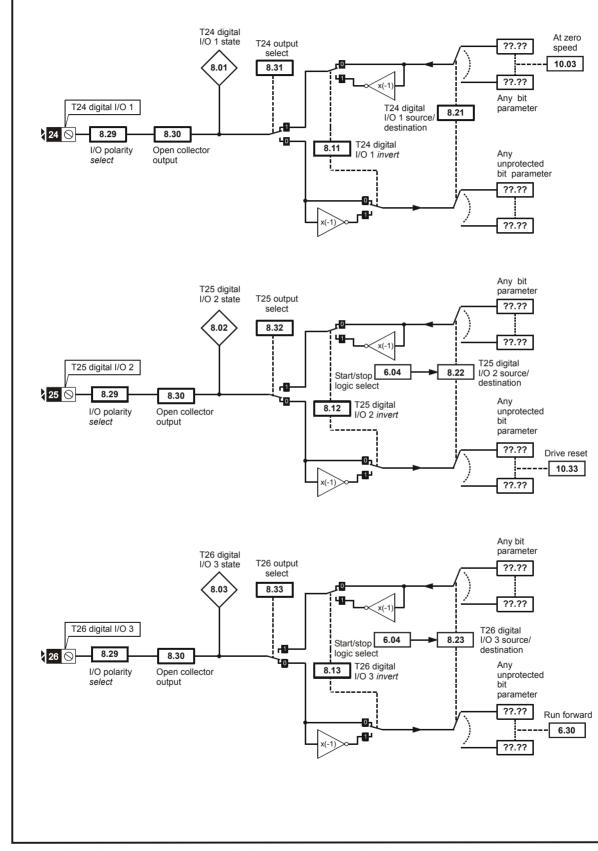
Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					•								

11.7 Menu 7: Analog I/O

Figure 11-11 Menu 7 logic diagram

Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Runningthe motor Optimization	n SMARTCARD Onboard Advanced parameters Data Diagnostics UL Listing Information
--	---

	Parameter	Ran	ge(‡)		Default(⇔)			Ту	-		
	Falameter	OL	CL	OL	VT	SV		_	ı y	he		
7.01	T5/6 analog input 1 level		0.00 %				RO			NC		
7.02	T7 analog input 2 level		0.0 %				RO	Bi		NC		
7.03	T8 analog input 3 level		0.0 %				RO	Bi		NC		
7.04	Power circuit temperature 1	-128 to	o 127 °C				RO	Bi		NC	PT	
7.05	Power circuit temperature 2	-128 to	o 127 °C				RO	Bi		NC		
7.06	Control board temperature	-128 to	o 127 °C				RO	Bi		NC	PT	
7.07	T5/6 analog input 1 offset trim {0.13}	±10.	000 %		0.000		RW	Bi				US
7.08	T5/6 analog input 1 scaling	0 to	4.000		1.000		RW	Uni				US
7.09	T5/6 analog input 1 invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US
7.10	T5/6 analog input 1 destination		to 21.51		Pr 1.36		RW	Uni	DE		PT	US
7.11	T7 analog input 2 mode {0.19}		4-20.tr (2), 20-4.tr (3), 4 (5), VOLt (6)		VOLt (6)		RW	Txt				US
7.12	T7 analog input 2 scaling		4.000		1.000		RW	Uni				US
7.13	T7 analog input 2 invert	()	or On (1)		OFF (0)		RW	Bit				US
7.14	T7 analog input 2 destination {0.20}) to 21.51		Pr 1.37		RW	Uni	DE		PT	US
7.15	T8 analog input 3 mode {0.21}	4-20 (4), 20-4 (5),	4-20.tr (2), 20-4.tr (3), VOLt (6), th.SC (7), h.diSP (9)		th (8)		RW	Txt				US
7.16	T8 analog input 3 scaling	0 to	4.000		1.000		RW	Uni				US
7.17	T8 analog input 3 invert	OFF (0)	or On (1)			RW	Bit				US	
7.18	T8 analog input 3 destination	Pr 0.00) to 21.51			RW	Uni	DE		PT	US	
7.19	T9 analog output 1 source) to 21.51	Pr 5.01	3.02	RW	Uni			PT		
7.20	T9 analog output 1 scaling	0.000	to 4.000		1.000		RW	Uni				US
7.21	T9 analog output 1 mode		, 4-20 (2), H.SPd (3)		VOLt (0)		RW	Txt				US
7.22	T10 analog output 2 source) to 21.51		Pr 4.02		RW	Uni			PT	US
7.23	T10 analog output 2 scaling		to 4.000		1.000		RW	Uni				US
7.24	T10 analog output 2 mode	VOLt (0), 0-20 (1)	, 4-20 (2), H.SPd (3)		VOLt (0)		RW	Txt				US
7.25	Calibrate T5/6 analog input 1 full scale	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
7.26	T5/6 analog input 1 sample time	0 to	8.0 ms		4.0		RW	Uni				US
7.28	T7 analog input 2 current loop loss	OFF (0)	or On (1)				RO	Bit		NC	PT	
7.29	T8 analog input 3 current loop loss	OFF (0)	or On (1)				RO	Bit		NC	PT	
7.30	T5/6 analog input 1 offset		0.00 %		0.00		RW RW	Bi				US
7.31	T7 analog input 2 offset		0.0 %	0.0				Bi				US
7.32	T8 analog input 3 offset		0.0 %		0.0		RW	Bi				US
7.33	T9 analog output 1 control	1.75	(1), AdV (2)		AdV (2)		RW	Txt				US
7.34	IGBT junction temperature	±20	0° 00				RO	Bi		NC	PT	
7.35	Drive thermal protection accumulator	0 to 1	00.0 %				RO	Uni		NC	PT	
7.36	Power circuit temperature 3	-128 to	o 127 °C				RO	Bi		NC	PT	


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

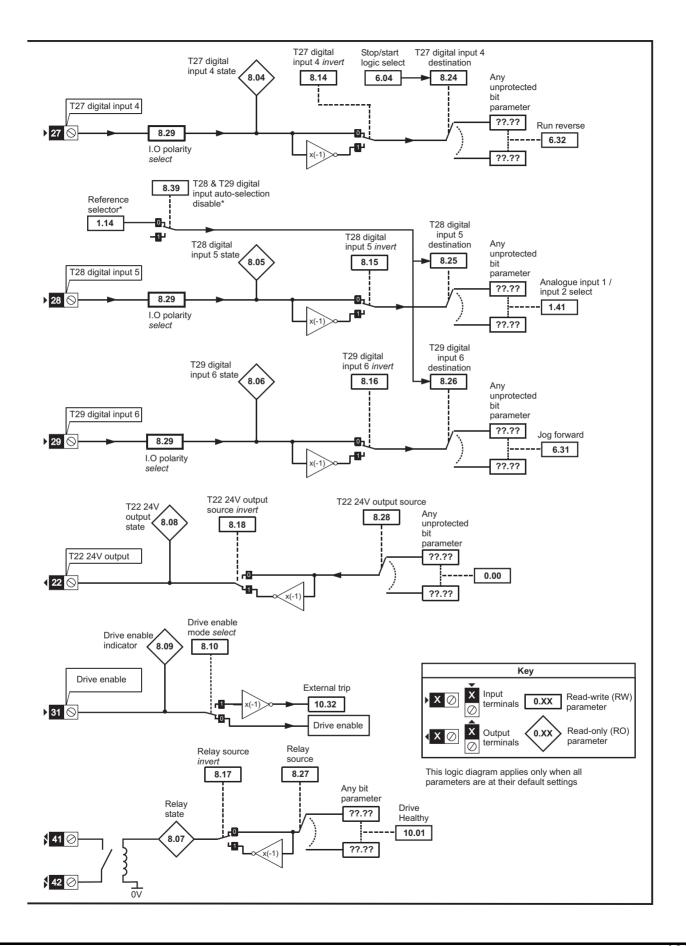
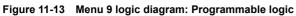
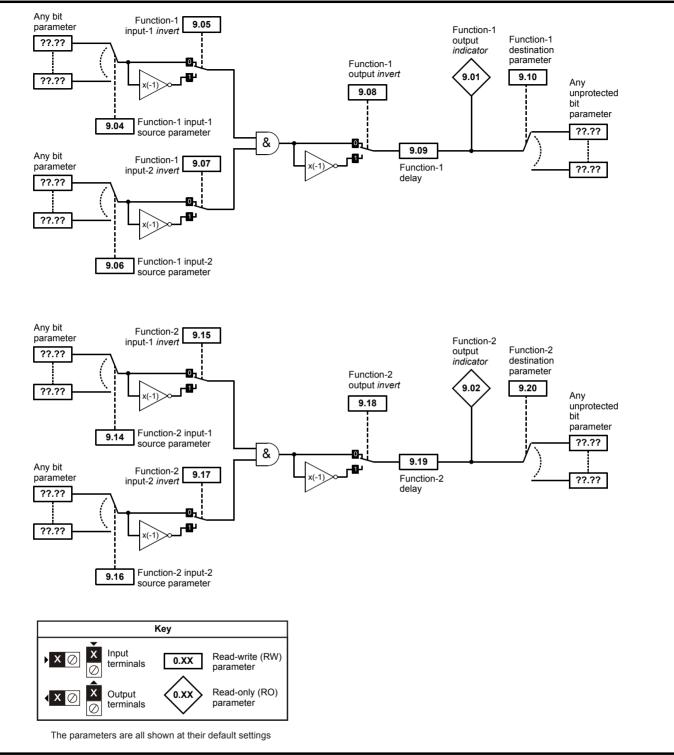

11.8 Menu 8: Digital I/O

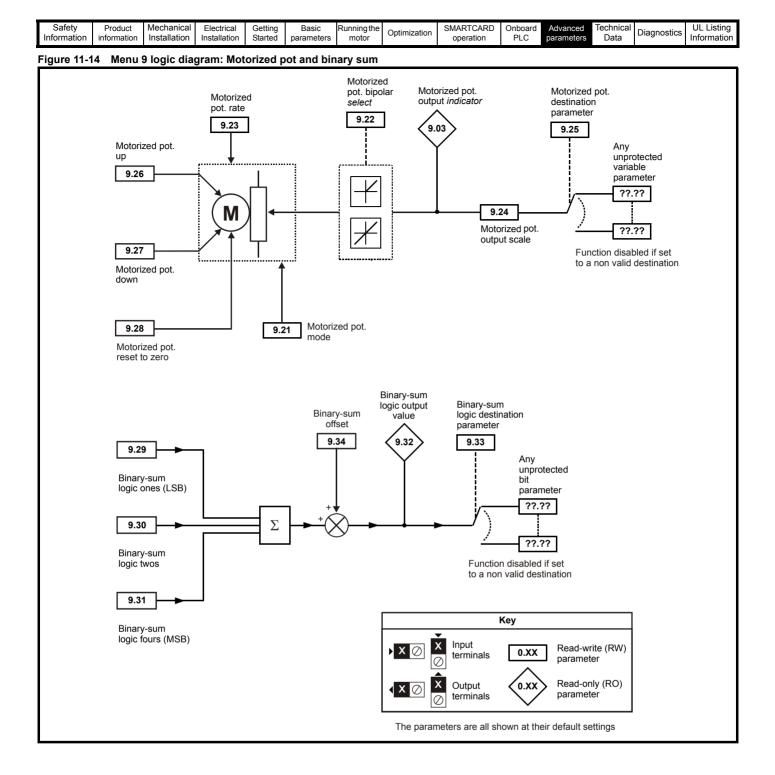
Figure 11-12 Menu 8 logic diagram

*For more information, refer to section 11.21.1 Reference modes on page 224.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					-			-					


Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimiza	ion SMARTCARD operation PLC Advanced parameters Data Diagnostics UL Listing Information
---	---


	Parameter	Ran	ge(‡)		Default(⇔)				Ту	no		
	Farameter	OL	CL	OL	VT	SV			ij	he		
8.01	T24 digital I/O 1 state	OFF (0) or On (1)				RO	Bit		NC	PT	
8.02	T25 digital I/O 2 state	OFF (0) or On (1)				RO	Bit		NC	PT	
8.03	T26 digital I/O 3 state	OFF (0) or On (1)				RO	Bit		NC	PT	
8.04	T27 digital input 4 state	OFF (0) or On (1)				RO	Bit		NC	PT	
8.05	T28 digital input 5 state	OFF (0) or On (1)				RO	Bit		NC	PT	
8.06	T29 digital input 6 state	OFF (0) or On (1)				RO	Bit		NC	PT	
8.07	Relay state	OFF (0) or On (1)				RO	Bit		NC	PT	
8.08	T22 24V output state	OFF (0) or On (1)				RO	Bit		NC	PT	
8.09	Drive enable indicator	OFF (0) or On (1)				RO	Bit		NC	PT	
8.10	Drive enable mode select	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.11	T24 digital I/O 1 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.12	T25 digital I/O 2 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.13	T26 digital I/O 3 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.14	T27 digital input 4 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.15	T28 digital input 5 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.16	T29 digital input 6 invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.17	Relay source invert	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.18	T22 24V output source invert	OFF (0) or On (1)		On (1)		RW	Bit				US
8.20	Digital I/O read word	0 t	o 511				RO	Uni		NC	PT	
8.21	T24 digital I/O 1 source/ destination	Pr 0.0 0) to 21.51		Pr 10.03		RW	Uni	DE		PT	US
8.22	T25 digital I/O 2 source/ destination	Pr 0.0 0) to 21.51		Pr 10.33		RW	Uni	DE		PT	US
8.23	T26 digital I/O 3 source/ destination	Pr 0.0 0) to 21.51		Pr 6.30		RW	Uni	DE		PT	US
8.24	T27 digital input 4 destination	Pr 0.00) to 21.51		Pr 6.32		RW	Uni	DE		PT	US
8.25	T28 digital input 5 destination	Pr 0.0 0) to 21.51		Pr 1.41		RW	Uni	DE		PT	US
8.26	T29 digital input 6 destination {0.17	} Pr 0.00) to 21.51		Pr 6.31		RW	Uni	DE		PT	US
8.27	Relay source	Pr 0.0 0) to 21.51		Pr 10.01		RW	Uni			PT	US
8.28	T22 24V output source	Pr 0.0 0) to 21.51		Pr 0.00		RW	Uni			PT	US
8.29	Positive logic select {0.18	} OFF (0) or On (1)		On (1)		RW	Bit			PT	US
8.30	Open collector output	· · ·) or On (1)		OFF (0)		RW	Bit	1			US
8.31	T24 digital I/O 1 output select	OFF (0) or On (1)		On (1)		RW	Bit				US
8.32	T25 digital I/O 2 output select) or On (1)		OFF (0)		RW	Bit				US
8.33	T26 digital I/O 3 output select	OFF (0) or On (1)		OFF (0)		RW	Bit				US
8.39	T28 & T29 digital input auto- selection disable {0.16	} OFF (0) or On (1)		OFF (0)		RW	Bit				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

11.9 Menu 9: Programmable logic, motorized pot, binary sum and timers

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

	Parameter	Ran	ge(≎)		Default(⇔)				Ту	20		
	Farameter	OL	CL	OL	VT	SV			IY	he		
9.01	Logic function 1 output	OFF (0)) or On (1)				RO	Bit		NC	PT	
9.02	Logic function 2 output	OFF (0)) or On (1)				RO	Bit		NC	PT	
9.03	Motorized pot output	±10	0.00 %				RO	Bi		NC	PT	PS
9.04	Logic function 1 source 1	Pr 0.00) to 21.51		Pr 0.00		RW	Uni			PT	US
9.05	Logic function 1 source 1 invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
9.06	Logic function 1 source 2	Pr 0.00) to 21.51		Pr 0.00		RW	Uni			PT	US
9.07	Logic function 1 source 2 invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
9.08	Logic function 1 output invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
9.09	Logic function 1 delay	±2	5.0 s		0.0		RW	Bi				US
9.10	Logic function 1 destination	Pr 0.00) to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.14	Logic function 2 source 1	Pr 0.00) to 21.51		Pr 0.00		RW	Uni			PT	US
9.15	Logic function 2 source 1 invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
9.16	Logic function 2 source 2	Pr 0.00) to 21.51		Pr 0.00		RW	Uni			PT	US
9.17	Logic function 2 source 2 invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
9.18	Logic function 2 output invert	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
9.19	Logic function 2 delay	±2	5.0 s		0.0		RW	Bi				US
9.20	Logic function 2 destination	Pr 0.00) to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.21	Motorized pot mode	0	to 3		2		RW	Uni				US
9.22	Motorized pot bipolar select	OFF (0)) or On (1)		OFF (0)		RW	Bit				US
9.23	Motorized pot rate	0 to	250 s		20		RW	Uni				US
9.24	Motorized pot scale factor	0.000	to 4.000		1.000		RW	Uni				US
9.25	Motorized pot destination	Pr 0.00) to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.26	Motorized pot up) or On (1)		OFF (0)		RW	Bit		NC		
9.27	Motorized pot down	OFF (0)) or On (1)		OFF (0)		RW	Bit	l	NC		
9.28	Motorized pot reset	OFF (0)) or On (1)		OFF (0)		RW	Bit	l	NC		
9.29	Binary sum ones input) or On (1)		OFF (0)		RW	Bit		NC		
9.30	Binary sum twos input	OFF (0)) or On (1)		OFF (0)		RW	Bit	l	NC		
9.31	Binary sum fours input	OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
9.32	Binary sum output		o 255					Uni		NC		
9.33	Binary sum destination	Pr 0.00) to 21.51		Pr 0.00		RW	Uni	DE		PT	US
9.34	Binary sum offset	0 t	o 248		0		RW	Uni				US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Product Mechanical Electrical Information information Installation Installation	Getting Basic F Started parameters	Running the motor Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	---------------------------------------	-----------------------------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Menu 10: Status and trips 11.10

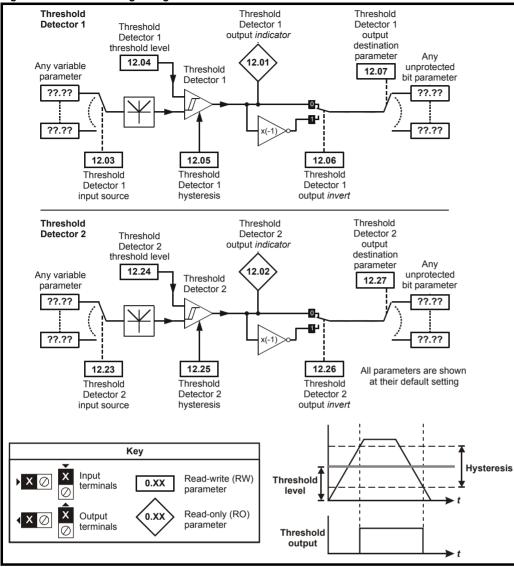
			T	F	Range	(①)	T		Defa	ult(⇔)		I		_			
	Parameter			OL		CL		OL	1	/т	SV			ту	ре		
10.01	Drive OK			OFF	(0) or	On (1)						RO	Bit		NC	PT	
10.02	Drive active			OFF	⁼ (0) or	On (1)						RO	Bit		NC	PT	
10.03	Zero speed			OFF	⁼ (0) or	On (1)						RO	Bit		NC	PT	
10.04	Running at or below minimur speed	n			. ,	On (1)						RO	Bit		NC	PT	
10.05	Below set speed				· · /	On (1)						RO	Bit		NC	PT	
10.06	At speed				= (0) or	.,						RO	Bit		NC	PT	L
10.07	Above set speed				= (0) or	()						RO	Bit			PT	L
10.08	Load reached	.,			= (0) or							RO	Bit		NC	PT	
10.09	Drive output is at current lim	It			= (0) or							RO RO	Bit		NC NC	PT PT	<u> </u>
10.10 10.11	Regenerating Braking IGBT active		_		= (0) or	On (1)						RO	Bit Bit		NC	PT	<u> </u>
10.11	Braking resistor alarm		_		· · /	On (1)						RO	Bit		NC		<u> </u>
10.12	Direction commanded		_			= FWD, 1 = REV]	_					RO	Bit		NC	PT	
10.13	Direction running		_	.,		= FWD, 1 = REV]	_					RO	Bit		NC	PT	
10.14	Line powersupply loss		_			On (1)						RO	Bit		NC		
10.16	Under voltage active				(0) or	()						RO	Bit		NC	PT	
10.10	Overload alarm		+			On (1)						RO	Bit		NC	PT	
10.18	Drive over temperature alar	n			= (0) or							RO	Bit		NC	PT	
10.19	Drive warning				= (0) or	()						RO	Bit			PT	<u> </u>
10.20	Trip 0				0 to 23							RO	Tx	t	NC	PT	PS
10.21	Trip 1				0 to 23	32*						RO	Tx	t			PS
10.22	Trip 2				0 to 23	32*						RO	Tx	t	NC	PT	PS
10.23	Trip 3				0 to 23	32*						RO	Tx	t	NC	PT	PS
10.24	Trip 4				0 to 23	32*						RO	Tx	t	NC	PT	PS
10.25	Trip 5				0 to 23	32*						RO	Tx	t	NC	PT	PS
10.26	Trip 6				0 to 23	32*						RO	Tx	t	NC	PT	PS
10.27	Trip 7				0 to 23	32*						RO	Tx	t	NC	PT	PS
10.28	Trip 8				0 to 23	32*						RO	Txt	t	NC	PT	PS
10.29	Trip 9				0 to 23	32*						RO	Tx	t	NC	PT	PS
10.30	Full power braking time				0 to 40					00		RW	Un	i			US
10.31	Full power braking period) to 150					.0		RW	Un				US
10.32	External trip				⁼ (0) or					F (0)		RW	Bit		NC		
10.33	Drive reset			OFF	= (0) or	()	_			F (0)		RW	Bit		NC		
10.34	No. of auto-reset attempts				0 to 9					0		RW	Un				US
10.35	Auto-reset delay			0	.0 to 25	5.0 S	_		1	.0		RW	Un	1			US
10.36	Hold drive OK until last attempt			OFF		On (1)				F (0)		RW	Bit				US
10.37	Action on trip detection		_		0 to 1		_			0		RW	Un		NO		US
10.38	User trip		_		0 to 2	00		_		0		RW	Un	'	NC		
10.39	Braking energy overload accumulator				0 to 100								Un		NC		
10.40) to 32,							RO			NC		
10.41	Trip 0 time: years.days	T. C		0.000 to	9.365	years.days			_			RO	Un		NC	PT	PS
10.42	Module number for trip 0, or time: hours.minutes					ours.minutes							Un				PS
10.43	Module number for trip 1, or,					urs.minutes						RO					PS
10.44	Module number for trip 2, or,	· ·				urs.minutes						RO					PS
10.45	Module number for trip 3, or,					urs.minutes						RO					PS
10.46	Module number for trip 4, or,					urs.minutes						RO					PS
10.47	Module number for trip 5, or,	-				urs.minutes						RO					PS
10.48 10.49	Module number for trip 6, or, Module number for trip 7, or,					urs.minutes urs.minutes						RO RO					PS PS
10.49	Module number for trip 8, or,					urs.minutes						RO					PS PS
10.50	Module number for trip 9, or,	-				urs.minutes						RO					PS PS
10.91		inp 9 dli	10	0 10 800	.00 1101	13.11111ULES						RU		'	INC	ΓI	гð
RW	Read / Write RO Read o	nly	Uni	Unipolar	Bi	Bi-polar	Bit	Bit para	ameter	Txt	Text string						
	Filtered DE Destina	-	NC	Not copied	RA	Rating dependent	PT	Protect		US	User save	F	s	Pow	er do	vn s	ave
				Johnou		. anng apprinderit				55	2001 0010	'	-		2. 40		

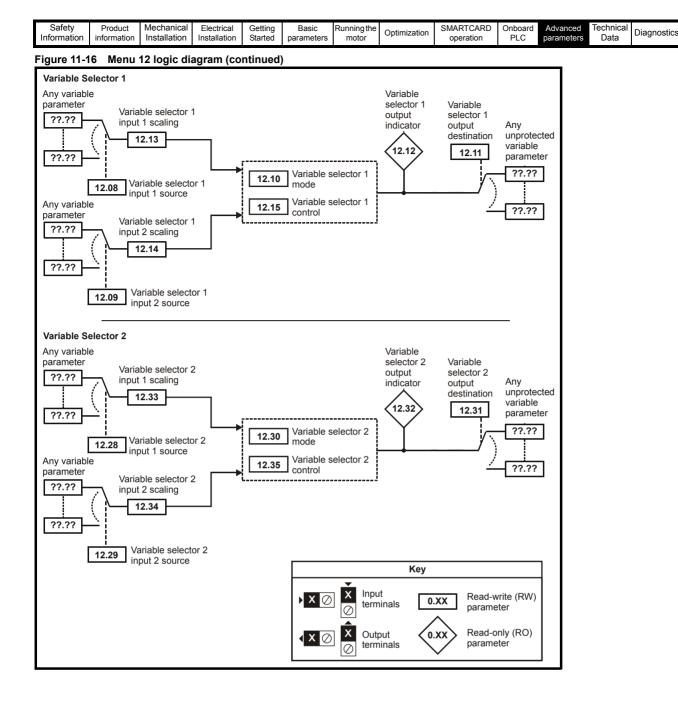
*The value given for the range is that obtained via serial communication. For the text string displayed on the drive, see Chapter 13 Diagnostics on

Safety Product Mechanical Electrical Getting Basic Runni Information information Installation Installation Started parameters model	he Optimization SMARTCARD operation	Onboard Advanced Technical Diag	nostics UL Listing Information
---	-------------------------------------	---------------------------------	-----------------------------------

11.11 Menu 11: General drive set-up

	Devemeter	Range(≎)	Default(⇔)	т	100
	Parameter	OL CL	OL VT SV	(I	/pe
11.01	Parameter 0.11 set up	Pr 1.00 to Pr 21.51	Pr 5.01 Pr 3.29	RW Uni	PT US
11.02	Parameter 0.12 set up	Pr 1.00 to Pr 21.51	Pr 4.01	RW Uni	PT US
11.03	Parameter 0.13 set up	Pr 1.00 to Pr 21.51	Pr 4.02 Pr 7.07	RW Uni	PT US
11.04	Parameter 0.14 set up	Pr 1.00 to Pr 21.51	Pr 4.11	RW Uni	PT US
11.05	Parameter 0.15 set up	Pr 1.00 to Pr 21.51	Pr 2.04	RW Uni	PT US
	Parameter 0.16 set up	Pr 1.00 to Pr 21.51	Pr 8.39 Pr 2.02	RW Uni	PT US
11.07	Parameter 0.17 set up	Pr 1.00 to Pr 21.51	Pr 8.26 Pr 4.12	RW Uni	PT US
11.08	Parameter 0.18 set up	Pr 1.00 to Pr 21.51	Pr 8.29	RW Uni	PT US
	Parameter 0.19 set up	Pr 1.00 to Pr 21.51	Pr 7.11	RW Uni	PT US
11.10 11.11	Parameter 0.20 set up Parameter 0.21 set up	Pr 1.00 to Pr 21.51 Pr 1.00 to Pr 21.51	Pr 7.14 Pr 7.15	RW Uni RW Uni	PT US PT US
	Parameter 0.22 set up	Pr 1.00 to Pr 21.51	Pr 1.10	RW Uni	PT US
11.12	Parameter 0.22 set up	Pr 1.00 to Pr 21.51	Pr 1.05	RW Uni	PT US
11.14	Parameter 0.24 set up	Pr 1.00 to Pr 21.51	Pr 1.21	RW Uni	PT US
	Parameter 0.25 set up	Pr 1.00 to Pr 21.51	Pr 1.22	RW Uni	PT US
11.16	Parameter 0.26 set up	Pr 1.00 to Pr 21.51	Pr 1.23 Pr 3.08	RW Uni	PT US
11.17	Parameter 0.27 set up	Pr 1.00 to Pr 21.51	Pr 1.24 Pr 3.34	RW Uni	PT US
11.18	Parameter 0.28 set up	Pr 1.00 to Pr 21.51	Pr 6.13	RW Uni	PT US
11.19	Parameter 0.29 set up	Pr 1.00 to Pr 21.51	Pr 11.36	RW Uni	PT US
11.20	Parameter 0.30 set up	Pr 1.00 to Pr 21.51	Pr 11.42	RW Uni	PT US
11.21	Parameter 0.30 scaling	0.000 to 9.999	1.000	RW Uni	US
11.22	Parameter displayed at power-up	Pr 0.00 to 00.59	Pr 0.10	RW Uni	PT US
11.23	Serial address {0.37}	0 to 247	1	RW Uni	US
11.24	Serial mode {0.35}	AnSI (0), rtU (1), Lcd (2)	rtU (1)	RW Txt	PT US
11.25	Baud rate {0.36}	300 (0), 600 (1), 1200 (2), 2400 (3), 4800 (4), 9600 (5), 19200 (6), 38400 (7), 57600 (8)*, 115200 (9)* *Modbus RTU only	19200 (6)	RW Txt	US
11.26	Minimum comms transmit delay	0 to 250ms	2	RW Uni	US
11.28	Drive derivative	0 to 16		RO Uni	NC PT
11.29	Software version {0.50}	1.00 to 99.99		RO Uni	NC PT
11.30	User security code {0.34}	0 to 999	0	RW Uni	NC PT PS
11.31	User drive mode {0.48}	OPEn LP (1), CL VECt (2), SErVO (3), rEGEn (4)	OPEn LP (1) CL VECt (2) SErVO (3)	RW Txt	NC PT
11.32	Maximum Heavy Duty current {0.32}	0.00 to 9999.99A		RO Uni	NC PT
11.33	Drive voltage rating {0.31}	200 (0), 400 (1), 575 (2), 690 (3)		RO Txt	NC PT
11.34	Software sub-version	0 to 99	<u> </u>	RO Uni	NC PT
11.35	Number of modules SMARTCARD parameter	0 to 10	0	RW Uni	PT US
11.36	data previously loaded {0.29}	0 to 999	0	RO Uni	NC PT US
11.37 11.38	SMARTCARD data number SMARTCARD data type / mode	0 to 1003 0 to 18	0	RW Uni RO Txt	NC PT
	SMARTCARD data type / mode	0 to 18	0	RU Txt RW Uni	NC PT
11.39	SMARTCARD data version	0 to 65,335		R0 Uni	NC PT
11.40	Status mode timeout	0 to 250s	240	RW Uni	US
11.42	Parameter copying {0.30}	nonE (0), rEAd (1), Prog (2), AutO (3), boot (4)	nonE (0)	RW Txt	NC *
11.43	Load defaults	nonE (0), Eur (1), USA (2)	nonE (0)	RW Txt	NC
11.44	Security status {0.49}	L1 (0), L2 (1), Loc (2)		RW Txt	PT US
11.45	Select motor 2 parameters	OFF (0) or On (1)	OFF (0)	RW Bit	US
11.46	Defaults previously loaded	0 to 2000		RO Uni	NC PT US
11.47	Drive Onboard PLC program enable	Halt program (0) Run program: out of range = clip (1) Run program: out of range = trip (2)	Run program: out of range = trip (2)	RW Uni	US
11.48	Drive Onboard PLC program status	-128 to +127		RO Bi	NC PT
11.49	Drive Onboard PLC programming events	0 to 65,535		RO Uni	NC PT PS
11.50	Drive Onboard PLC program average scan time	0 to 65,535 ms		RO Uni	NC PT
11.51	Drive Onboard PLC program first run	OFF (0) or On (1)		RO Bit	NC PT
* Mada	s 1 and 2 are not user saved. Mode	a 0 2 and 1 are upor aqued			


 * Modes 1 and 2 are not user saved, Modes 0, 3 and 4 are user saved


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

1	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
						-								

11.12 Menu 12: Threshold detectors, variable selectors and brake control function

Figure 11-15 Menu 12 logic diagram

UL Listing

Information

		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of warming a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.

Figure 11-17 Open-loop brake function

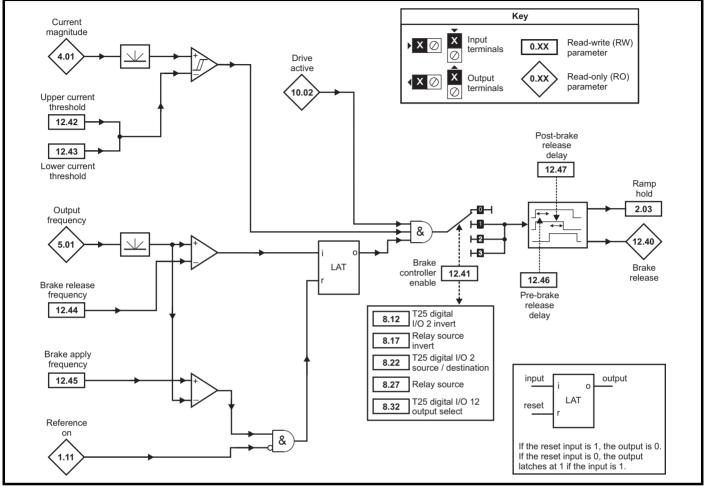
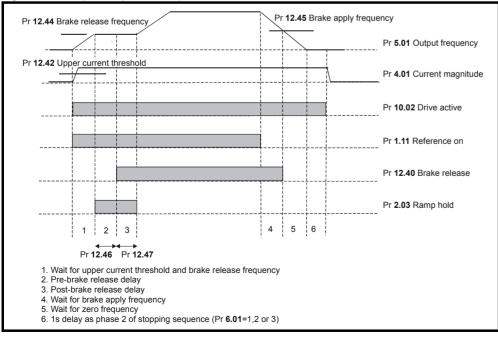
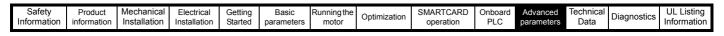
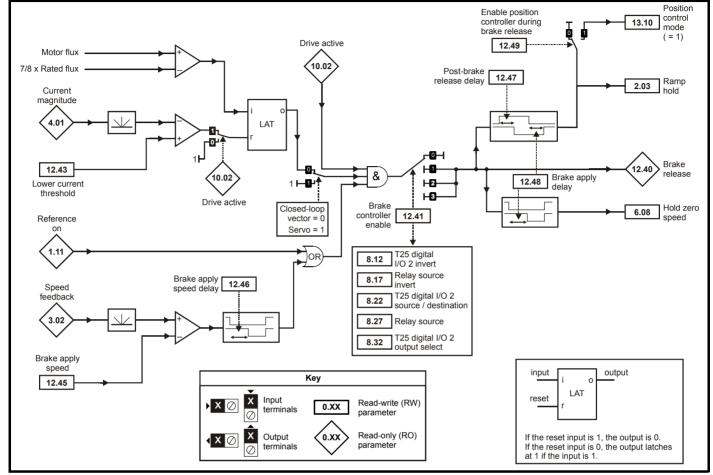
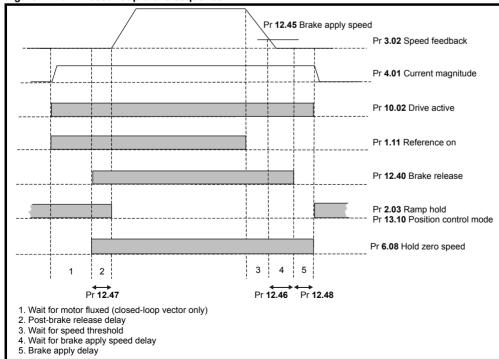
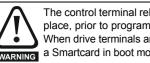




Figure 11-18 Open-loop brake sequence




The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of WARNING a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.

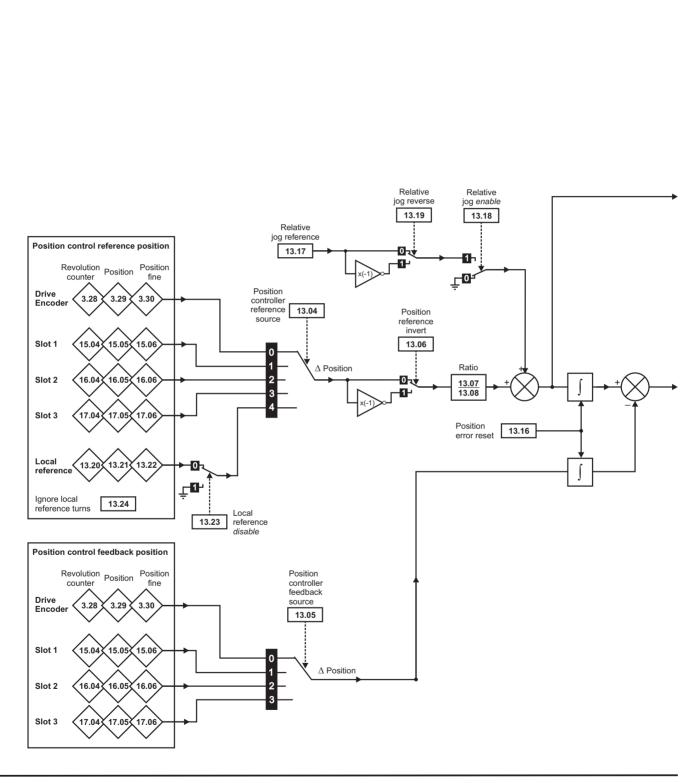


Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimiza	on SMARTCARD Onboard Advanced Data Diagnostics UL Listing Information
---	---

The control terminal relay can be selected as an output to release a brake. If a drive is set up in this manner and a drive replacement takes place, prior to programming the drive on initial power up, the brake may be released.

When drive terminals are programmed to non default settings the result of incorrect or delayed programming must be considered. The use of warking a Smartcard in boot mode or an SM-Applications module can ensure drive parameters are immediately programmed to avoid this situation.

Parameter Ot. CL OL OL OL OL OL Type 12.01 Threshold delector 1 output OFF (0) or On (1) Pr 0.00 RN Uni I 12.01 Threshold delector 1 source Pr 0.00 to 25.00 % 0.00 RN Uni I 12.05 Threshold delector 1 source Pr 0.00 to 25.00 % 0.00 RN Uni I 12.06 Threshold delector 1 source Pr 0.00 to 25.01 Pr 0.00 RN Uni I 12.07 Threshold delector 1 source Pr 0.00 to 25.01 Pr 0.00 RN Uni I 12.07 Threshold delector 1 source Pr 0.00 to 25.14 Pr 0.00 RN Uni I 12.04 Variable selector 1 source 2 Pr 0.00 to 25.14 Pr 0.00 RN Uni I 12.04 Variable selector 1 source 1 Pr 0.00 to 25.151 Pr 0.00 RN Uni I 12.14 Variable selector 1 source 1 Pr 0.00 to 25.151 Pr 0.00 RN Uni I 12.14 Variable selector 1 source 1 ±4.000 1.000		Devenenter	Rang	je(‡)		Default(⇔)				T																																																																																																																																																																																																																																																	
12.02 Threshold detector 2 output OFF (0) or On (1) PR 0.00 RV Uni C 12.03 Threshold detector 1 surve PR 0.00 (2.151 PR 0.00 RV Uni C 12.04 Threshold detector 1 level 0.00 to 25.00 % 0.00 RV Uni C 12.06 Investold detector 1 output OFF (0) or On (1) OFF (0) or RV RV Uni E 12.06 Investold detector 1 output OFF (0) or On (1) OFF (0) or RV RV Uni E 12.07 Threshold detector 1 output OFF (0) or On (1) OFF (0) OR RV Uni DE 12.08 Variable selector 1 source 1 Pr 0.00 to 21.51 Pr 0.00 RV Uni E 12.10 Variable selector 1 mode Ime orbital (2), multiply (4), divide (5), mode (5),		Parameter	OL	CL	OL	VT	SV			iy	pe																																																																																																																																																																																																																																																
12.03 Threshold detector 1 source PF 0.00 to 100.00 % 0.00 RW Uni 12.04 Threshold detector 1 level 0.00 to 100.00 % 0.00 RW Uni 12.04 Threshold detector 1 level 0.00 to 25.00 % 0.00 RW Uni 12.05 Threshold detector 1 output OFF (0) or On (1) OFF (0) RW Bit 12.06 Threshold detector 1 output OFF (0) or On (1) OFF (0) RW Uni E 12.07 Tersshold detector 1 source 1 Pr 0.00 to 21.51 Pr 0.00 RW Uni E 12.09 Variable selector 1 mode Select input 1 (0), select input 2 (1), add (2), select input 1 (0) RW Uni E 12.10 Variable selector 1 output Pr 0.00 to 21.51 Pr 0.00 RW Uni E 12.14 Variable selector 1 output 2100.00 % Select input 1 (0) RW Bit 12.14 Variable selector 1 output 2100.00 % RO Bit RO Bit 12.14 Variable selector 1 output	12.01	Threshold detector 1 output		. ,				RO	Bit																																																																																																																																																																																																																																																		
12.04 Threshold detector 1 0.00 to 100.00 % 0.00 RW Uni 12.05 Hyreshold detector 1 0.00 to 25.00 % 0.00 RW Uni 12.05 Hyreshold detector 1 0.01 to 25.00 % 0.00 RW Uni DE 12.07 Threshold detector 1 0.01 to 25.00 % 0.00 RW Uni DE 12.07 Threshold detector 1 PF 0.00 to 21.51 PF 0.00 RW Uni DE 12.09 Variable selector 1 source 2 PF 0.00 to 21.51 PF 0.00 RW Uni E 12.04 Variable selector 1 mode time constant (6), inare 1mp (2), motious (8), powers (9), sectional control (10), external restinem motior (11), external restinem motior (10), external restinem motior (11) RO Bi NC 12.13 Variable selector 1 \$,								NC																																																																																																																																																																																																																																																
12.01 Threshold detector 1 0.00 to 25.00 % 0.00 RW Un 12.01 Invested 10.00 to 21.01 OFF (0) or On (1) OFF (0) RW Bit 12.01 Invest Threshold detector 1 output OFF (0) or On (1) OFF (0) RW Un DE 12.03 Variable selector 1 source 1 Pr 0.00 to 21.51 Pr 0.00 RW Un DE 12.04 Variable selector 1 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Un DE 12.04 Variable selector 1 mode Select input 1 (0) select input 2 (1), add (2), stuber (3), multiply (4) dvide (3), stuber (3), multiply (4), dvide (3), multiply (4), dvide (3), dvide (4), dvide (4)									-			PT																																																																																																																																																																																																																																															
12.06 hysteresis 0.001 (k2.0.0%) 0.001 (kW) kW Int 12.06 Tirreshold detector 1 output invert OFF (0) or On (1) OFF (0) RW Bit I 12.07 Tirreshold detector 1 destination Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.08 Variable selector 1 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.04 Variable selector 1 mode time constant (0), imear ramp (7), moduls (3), power (9), sectional control (10), extential rectifer monitor (11) Select input 1 (0) RW Uni DE 12.14 Variable selector 1 output ±100.00 % RO Bit N 12.14 Variable selector 1 output ±100.00 % RO RW Uni DE 12.14 Variable selector 1 source 1 ±4.000 1.000 RW Bit I 12.14 Variable selector 1 control 0.00 to 100.00 s 0.000 RW Uni I 12.14 Variable selector 1 control 0.00 to 100.00 s 0.000 RW	12.04		0.00 to 1	00.00 %		0.00		RW	Uni				US																																																																																																																																																																																																																																														
12.00 Invert OPP (00 01(1) OPP (00 01(1) OPP (00 01(1) NM 01 DE 12.07 Threshold detector 1 Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.08 Variable selector 1 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.09 Variable selector 1 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.01 Variable selector 1 mode time constant (6), inear ram (7), modus (8), power (9), sectional control (10), external ractive monitor (11) Select input 1 (0) RW Uni DE 12.14 Variable selector 1 output ±100.00 % RO Bi NC NC 12.14 Variable selector 1 source 1 ±4.000 1.000 RW Uni DE 12.14 Variable selector 1 source 2 ±4.000 1.000 RW Uni DE 12.14 Variable selector 1 source 1 ±4.000 1.000 RW Uni DE 12.14 Variable selector 1 source 2 ±4.000 0.000 RW Uni DE 12.14 Variable selector 2 source 1 0.00	12.05	hysteresis	0.00 to 2	25.00 %		0.00		RW	Uni				US																																																																																																																																																																																																																																														
12.07 destinationPT 0.00 to 21.51PT 0.00RWUni12.08Variable selector 1 source 1PT 0.00 to 21.51PT 0.00RWUni12.09Variable selector 1 source 2PT 0.00 to 21.51PT 0.00RWUni12.10Variable selector 1 modeSelect input 1 (0) select input 2 (1), add (2); subtract (3), multiply (4), divide (6), une constant (6), inper ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (1)Select input 1 (0)RWUni12.11Variable selector 1 output ± 100.00 %RORNUniDE12.12Variable selector 1 source 1 ± 4000 1.000 RWBiI12.14Variable selector 1 source 2 ± 4.000 1.000 RWBiI12.15Variable selector 1 source 2 ± 4.000 1.000 RWBiI12.14Variable selector 1 source 2 ± 4.000 0.00 to 100.00 s 0.00 RWUni12.15Variable selector 1 source 2 ± 4.000 0.00 to 100.00 RWUniI12.16Variable selector 2 sourcePr 0.00 to 21.51Pr 0.00RWUni12.26Threshold detector 2 sourcePr 0.00 to 21.51Pr 0.00RWUni12.27Threshold detector 2 source 1Pr 0.00 to 21.51Pr 0.00RWUni12.28Variable selector 2 source 2Pr 0.00 to 21.51Pr 0.00RWUni12.24Variable selector 2 source 1Pr 0.00 to 21.51Pr 0	12.06	invert	OFF (0)	or On (1)		OFF (0)		RW	Bit				US																																																																																																																																																																																																																																														
12.09 Variable selector 1 source 2 Pr 0.00 (o 21.61 Pr 0.00 RW Uni 12.10 Variable selector 1 mode Select input 1 (0), select input 2 (1), add (2), source 1 (0), sectional control (10), external control (10), exte	12.07		Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US																																																																																																																																																																																																																																														
Select input 1 (0). select input 2 (1). add (2). subtra (3). multipl (4) divide (6). time constant (6). linear ramp (7). modulus (6). powers (9). sectional control (10). external rectifer monitor (11) Select input 1 (0) RW Uni 12.10 Variable selector 1 destination Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.12 Variable selector 1 output ±100.00 % Pr 0.00 RW Bi N 12.12 Variable selector 1 output ±100.00 % Pr 0.00 RW Bi N 12.12 Variable selector 1 output ±100.00 % 0.00 RW Bi N 12.13 variable selector 1 control 0.00 to 100.00 s 0.00 RW Bi N 12.24 Threshold detector 2 source Pr 0.00 to 21.51 Pr 0.00 RW Uni N 12.24 Threshold detector 2 source Pr 0.00 to 21.51 Pr 0.00 RW Uni N 12.24 Threshold detector 2 source Pr 0.00 to 21.51 Pr 0.00 RW Uni N 12.24 Variable selector 2 output OFF (0) or On (1)	12.08	Variable selector 1 source 1	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US																																																																																																																																																																																																																																														
12.10 Variable selector 1 mode subfract (3), multiply (4), divide (5), best map (7), modulus (6), powers (9), sectional control (10), external rectifier monitor (11) Select input 1 (0) RW Uni External control (10), external rectifier monitor (11) 12.11 Variable selector 1 output ±100.00 % RO Bi NC 12.12 Variable selector 1 source 1 ±4.000 1.000 RW Bi I 12.14 Variable selector 1 source 2 ±4.000 1.000 RW Bi I 12.15 Variable selector 1 control 0.00 to 100.00 s 0.000 RW Uni I 12.23 Threshold detector 2 source Pr 0.00 to 25.01 Pr 0.00 RW Uni I 12.24 Threshold detector 2 source 0.00 to 25.00 % 0.00 RW Uni I 12.26 Threshold detector 2 output OFF (0) or On (1) OFF (0) RW Bi I 12.24 Threshold detector 2 output OFF (0) or On (1) OFF (0) RW Uni I 12.24 Threshold detector 2	12.09	Variable selector 1 source 2				Pr 0.00		RW	Uni			PT	US																																																																																																																																																																																																																																														
12.11 destinationPf 0.00 (2 1.51)Pf 0.00 (2 N, 51)Pf 0.00 (N)NC12.12Variable selector 1 source 1 scaling ± 100.00 % $= 1000$ RWBiNC12.13Variable selector 1 source 2 scaling ± 4.000 $= 1.000$ RWBiNC12.14Variable selector 1 source 2 scaling ± 4.000 $= 0.000$ RWBiNC12.15Variable selector 1 control $= 0.000$ to 100.00 s $= 0.000$ RWUniI12.23Threshold detector 2 source $= Pr 0.00$ to 21.51 $= Pr 0.000$ RWUniI12.24Threshold detector 2 output hysteresis $= 0.000$ to 21.51 $= Pr 0.000$ RWUniI12.24Threshold detector 2 subtractiol detector 2 subtractiol (3), multipl (4), divide (6), invert $= Pr 0.000$ RWUniI12.24Variable selector 2 source 1 $= Pr 0.000$ to 21.51 $= Pr 0.000$ RWUniI12.29Variable selector 2 source 1 $= Pr 0.000$ to 21.51 $= Pr 0.000$ RWUniI12.29Variable selector 2 mode $= 0.000$ to 21.51 $= Pr 0.000$ RWUniI12.31Variable selector 2 source 1 $= Pr 0.000$ to 21.51 $= Pr 0.000$ RWUniI12.32Variable selector 2 output $= 10.00$ $= 10.00$ RWUniI12.32Variable selector 2 output $= 10.00$ $= 10.00$ RWUniI12.33Variable selector 2	12.10	Variable selector 1 mode	subtract (3), multi time constant (6), linea powers (9), secti	ply (4), divide (5), r ramp (7), modulus (8), onal control (10),	Ş	Select input 1	(0)	RW	Uni				US																																																																																																																																																																																																																																														
12.13 Variable selector 1 source 1 scaling 14.00 1.000 RW Bi 12.14 Variable selector 1 source 2 scaling 14.00 1.000 RW Bi 12.14 Variable selector 1 source 2 scaling 14.000 1.000 RW Bi 12.15 Variable selector 1 control 0.00 to 100.00 s 0.00 RW Uni 12.24 Threshold detector 2 source Pr 0.00 to 21.51 Pr 0.00 RW Uni 12.25 Threshold detector 2 source 0.00 to 25.00 % 0.000 RW Uni 12.26 Threshold detector 2 output invert OFF (0) or On (1) OFF (0) RW Bit 12.27 Threshold detector 2 destination Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.28 Variable selector 2 source 1 Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.29 Variable selector 2 mode Select input 1 (0), select input 2 (1), add (2), subtract (3), multiply (4), divide (5), power (9), sectinal control (10). RW Uni E 12.30 <td< td=""><td>12.11</td><td></td><td>Pr 0.00</td><td>to 21.51</td><td></td><td>Pr 0.00</td><td></td><td>RW</td><td>Uni</td><td>DE</td><td></td><td>PT</td><td>US</td></td<>	12.11		Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US																																																																																																																																																																																																																																														
12.13 scaling 1.000 RW Bi 12.14 Variable selector 1 source 2 scaling ±4.000 1.000 RW Bi I 12.15 Variable selector 1 control 0.00 to 100.00 s 0.00 RW Uni I 12.23 Threshold detector 2 source Pr 0.00 to 21.51 Pr 0.00 RW Uni I 12.24 Threshold detector 2 source 0.00 to 25.00 % 0.00 RW Uni I 12.25 Threshold detector 2 output hysteresis 0.00 to 25.00 % 0.00 RW Uni I 12.26 Threshold detector 2 output hysteresis 0.00 to 21.51 Pr 0.00 RW Uni I 12.27 Threshold detector 2 source 1 Pr 0.00 to 21.51 Pr 0.00 RW Uni I 12.28 Variable selector 2 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni I 12.29 Variable selector 2 mode Select input 1 (0), select input 2 (1), add (2), select input 1 (0) RW Uni I 12.30 Variable selector 2 output Pr 0.00 to 21.51 Pr 0.00 RW <td< td=""><td>12.12</td><td>Variable selector 1 output</td><td>±100</td><td>.00 %</td><td></td><td></td><td></td><td>RO</td><td>Bi</td><td></td><td>NC</td><td>PT</td><td></td></td<>	12.12	Variable selector 1 output	±100	.00 %				RO	Bi		NC	PT																																																																																																																																																																																																																																															
12.14 scaling 1.000 RW Bit 12.25 Threshold detector 2 source Pr 0.00 to 21.51 Pr 0.00 RW Uni Image: Control Contrel Control Control Control Contene Control Control Contene Contr	12.13		±4.	000		1.000		RW	Bi				US																																																																																																																																																																																																																																														
12.23 Threshold detector 2 source Pr 0.00 to 21.51 Pr 0.00 RW Uni 12.24 Threshold detector 2 level 0.00 to 100.00 % 0.00 RW Uni 1 12.25 Threshold detector 2 level 0.00 to 25.00 % 0.00 RW Uni 1 12.26 Threshold detector 2 output invert OFF (0) or On (1) OFF (0) RW Uni 1 12.27 Threshold detector 2 output destination OFF (0) or On (1) OFF (0) RW Uni 1 12.28 Variable selector 2 source 1 Pr 0.00 to 21.51 Pr 0.00 RW Uni 1 12.29 Variable selector 2 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni 1 12.30 Variable selector 2 mode Select input 1 (0), select input 2 (1), add (2), subtract (3), multiply (4), divide (5), time constant (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) RW Uni 1 12.31 Variable selector 2 output ±1000 % RO Bi NC 12.32 Variable selector 2 sourc	12.14		±4.	000		1.000		RW	Bi				US																																																																																																																																																																																																																																														
12.24 Threshold detector 2 level 0.00 to 100.00 % 0.00 RW Uni 12.26 Threshold detector 2 invert 0.00 to 25.00 % 0.00 RW Uni Image: Comparison of the comparison of	12.15	Variable selector 1 control	0.00 to 7	100.00 s		0.00		RW	Uni				US																																																																																																																																																																																																																																														
Intershold detector 2 hysteresis Intershysteresis Intershold detector 2 hysteresis	12.23	Threshold detector 2 source				Pr 0.00		RW	Uni			PT	US																																																																																																																																																																																																																																														
12.22 hysteresis 0.00 to 25.00 % 0.00 PW Uni 12.26 Threshold detector 2 output wert OFF (0) or On (1) OFF (0) RW Bit Image: constraint of the selector 2 output destination Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.29 Variable selector 2 source 1 Pr 0.00 to 21.51 Pr 0.00 RW Uni Image: constraint of the selector 2 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni Image: constraint of the selector 2 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni Image: constraint of the selector 2 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni Image: constraint of the selector 2 source 2 Select input 2 (1), add (2), subtract (3), multiply (4), divide (5), time constraint (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) RW Uni Image: constraint of the selector 2 source 1 Image: constraint	12.24	Threshold detector 2 level	0.00 to 1	00.00 %		0.00		RW	Uni				US																																																																																																																																																																																																																																														
12.20invertOPF (0) of On (1)OPF (0)RWBit12.27Threshold detector 2 detainationPr 0.00 to 21.51Pr 0.00RWUniDE12.28Variable selector 2 source 1Pr 0.00 to 21.51Pr 0.00RWUniI12.29Variable selector 2 source 2Pr 0.00 to 21.51Pr 0.00RWUniI12.30Variable selector 2 modeSelect input 1 (0), select input 2 (1), add (2), subtract (3), multiply (4), divide (5), time constant (6), linear ramp (7), modulus (8), powers (8), sectional control (10), external rectifier monitor (11)Select input 1 (0)RWUniI12.31Variable selector 2 destinationPr 0.00 to 21.51Pr 0.00RWUniI12.32Variable selector 2 output±100.00 %RWUniDE12.33variable selector 2 source 1 scaling±4.0001.000RWBiI12.34Variable selector 2 control0.00 to 100.00 s0.00RWBiI12.34Variable selector 2 control0.00 to 100.00 s0.00RWUniI12.34Variable selector 2 control0.00 to 20.0 M50RWUniI12.34Brake controller	12.25		0.00 to 2	25.00 %		0.00		RW	Uni				US																																																																																																																																																																																																																																														
12.27 destination Pr 0.00 to 21.51 Pr 0.00 RW Uni DE 12.28 Variable selector 2 source 1 Pr 0.00 to 21.51 Pr 0.00 RW Uni Image: Constraint of the selector 2 source 2 12.29 Variable selector 2 source 2 Pr 0.00 to 21.51 Pr 0.00 RW Uni Image: Constraint of the selector 2 source 2 12.30 Variable selector 2 mode Select input 1 (0), select input 2 (1), add (2), subtract (3), multiply (4), divide (5), item constant (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) Select input 1 (0) RW Uni Image: Constant (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) RW Uni Image: Constant (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) RW Uni Image: Constant (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) RW Uni Image: Constant (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) RW Uni Image: Constant (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) RW Uni Image: Constant (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) RW Uni Image: Constant (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11) Image: Constant (7), modulus (8), powers (9), sectional control (10), fower (1), fower (12.26		OFF (0)	or On (1)		OFF (0)		RW	Bit				US																																																																																																																																																																																																																																														
12.29Variable selector 2 source 2Pr 0.00 to 21.51Pr 0.00RWUni12.30Variable selector 2 modeSelect input 1 (0), select input 2 (1), add (2), subtract (3), multiply (4), divide (5), time constant (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11)Select input 1 (0)RWUniL12.31Variable selector 2 destinationPr 0.00 to 21.51Pr 0.00RWUniDE12.32Variable selector 2 output±100.00 %ROBiNC12.33Variable selector 2 source 1 scaling±4.0001.000RWBi12.34Variable selector 2 source 2 scaling±4.0001.000RWBi12.34Variable selector 2 control0.00 to 100.00 s0.000RWUni12.34Variable selector 2 source 2 scaling±4.0001.000RWWi12.34Variable selector 2 control0.00 to 100.00 s0.000RWWi12.40Brake release indicatorOFF (0) or On (1)RORWWi12.41Brake controller enabledis (0), FEL (1), d IO (2), USEr (3)dis (0)RWWi12.42Upper current threshold0 to 200 %1.0RWUni112.43Lower current threshold0 to 200 %1.0RWUni112.44Brake cohroller enable0.0 to 20.0 Hz1.0RWWi112.45Brake apply frequency0.0 to 20.0 Hz0.0 to 20.0 FR1.0RWUni <td>12.27</td> <td></td> <td>Pr 0.00</td> <td>to 21.51</td> <td></td> <td>Pr 0.00</td> <td></td> <td>RW</td> <td>Uni</td> <td>DE</td> <td></td> <td>PT</td> <td>US</td>	12.27		Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US																																																																																																																																																																																																																																														
12.30Variable selector 2 modeSelect input 1 (0), select input 2 (1), add (2), subtract (3), multiply (4), divide (5), time constant (6), linear ramp (7), modulus (8), power (9), sectional control (10), external rectifier monitor (11)Select input 1 (0)RWUniL12.31Variable selector 2 destinationPr 0.00 to 21.51Pr 0.00RVUniDE12.32Variable selector 2 output±100.00 %ROBiNC12.33Variable selector 2 source 1 scaling±4.0001.000RWBi12.34Variable selector 2 cource 1 scaling±4.0001.000RWBi12.34Variable selector 2 control0.00 to 100.00 s0.00RWUni12.34Variable selector 2 control0.00 to 100.00 s0.00RWUni12.34Variable selector 2 control0.00 to 100.00 s0.00RWUni12.34Variable selector 2 control0.00 to 100.00 s0.00RWUni12.40Brake release indicatorOFF (0) or On (1)RORVUni12.41Larake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWUni12.42Upper current threshold0 to 200 %10RWUni12.43Lower current threshold0 to 200 %10RWUni12.44Brake release frequency0.0 to 20.0 Hz1.0RWUni <tr <tr="">12.44<t< td=""><td>12.28</td><td>Variable selector 2 source 1</td><td>Pr 0.00</td><td>to 21.51</td><td></td><td>Pr 0.00</td><td></td><td>RW</td><td>Uni</td><td></td><td></td><td>PT</td><td>US</td></t<></tr> <tr><td>12.30Variable selector 2 modesubtract (3), multiply (4), divide (5), time constant (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11)Select input 1 (0)RWUniE12.31Variable selector 2 destinationPr 0.00 to 21.51Pr 0.00RWUniDE12.32Variable selector 2 output±100.00 %ROBiNC12.33Variable selector 2 source 1 scaling±4.0001.000RWBi12.34Variable selector 2 source 2 scaling±4.0001.000RWBi12.35Variable selector 2 control0.00 to 100.00 s0.000RWUni12.40Brake release indicatorOFF (0) or On (1)RORWUni12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxt12.42Upper current threshold0 to 200 %1.0RWUni12.43Lower current threshold0.0 to 20.0 Hz1.0RWUni12.44Brake release frequency0.0 to 20.0 Hz1.0RWUni12.45Brake apply frequency / speed0.0 to 20.0 Hz1.0RWUni12.44Or-Prevarke release delay CL>0.0 to 20.0 Hz0 to 200 rpm2.05RWUni12.47Post brake release delay0.0 to 25.0 s1.0RWUni</td><td>12.29</td><td>Variable selector 2 source 2</td><td>Pr 0.00</td><td>to 21.51</td><td></td><td>Pr 0.00</td><td></td><td>RW</td><td>Uni</td><td></td><td></td><td>PT</td><td>US</td></tr> <tr><td>12.31 destinationdestinationPP 0.00 to 21.51PP 0.00PP /td><td>12.30</td><td>Variable selector 2 mode</td><td>subtract (3), multi time constant (6), linea powers (9), secti</td><td>ply (4), divide (5), r ramp (7), modulus (8), onal control (10),</td><td>5</td><td>Select input 1</td><td>(0)</td><td>RW</td><td>Uni</td><td></td><td></td><td></td><td>US</td></tr> <tr><td>12.33Variable selector 2 source 1 scaling±4.0001.000RWBiI12.34Variable selector 2 source 2 scaling±4.0001.000RWBiI12.35Variable selector 2 control0.00 to 100.00 s0.00RWUniI12.40Brake release indicatorOFF (0) or On (1)RORWBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBitI12.46OL> Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI</td><td>12.31</td><td></td><td>Pr 0.00</td><td>to 21.51</td><td></td><td>Pr 0.00</td><td></td><td>RW</td><td>Uni</td><td>DE</td><td></td><td>PT</td><td>US</td></tr> <tr><td>12.33scaling±4.0001.000RWBi12.34Variable selector 2 source 2 scaling±4.0001.000RWBi12.35Variable selector 2 control0.00 to 100.00 s0.00RWUni12.40Brake release indicator0.00 to 100.00 s0.00RWUni12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxt12.42Upper current threshold0 to 200 %50RWUni12.43Lower current threshold0 to 200 %10RWUni12.44Brake release frequency0.0 to 20.0 Hz1.0RWUni12.45Brake apply frequency / speed0.0 to 20.0 Hz1.0RWUni12.46OL > Pre-brake release delay0.0 to 25.0 s1.0RWUni12.47Post brake release delay0.0 to 25.0 s1.0RWUni</td><td>12.32</td><td></td><td>±100</td><td>.00 %</td><td></td><td></td><td></td><td>RO</td><td>Bi</td><td></td><td>NC</td><td>PT</td><td></td></tr> <tr><td>12.34 scalingscaling1.000RWBI12.35Variable selector 2 control0.00 to 100.00 s0.00RWUni12.40Brake release indicatorOFF (0) or On (1)ROBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBit12.46OL > Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI</td><td>12.33</td><td></td><td>±4.</td><td>000</td><td></td><td>1.000</td><td></td><td>RW</td><td>Bi</td><td></td><td></td><td></td><td>US</td></tr> <tr><td>12.40Brake release indicatorOFF (0) or On (1)ROBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBitI12.46OL> Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI</td><td>12.34</td><td></td><td>±4.</td><td>000</td><td></td><td>1.000</td><td></td><td></td><td></td><td></td><td></td><td></td><td>US</td></tr> <tr><td>12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBit12.46QL> Pre-brake release delay0.0 to 25.0 s1.0RWUniI12.47Post brake release delay0.0 to 25.0 s1.0RWUniI</td><td>12.35</td><td>Variable selector 2 control</td><td>0.00 to ²</td><td>100.00 s</td><td></td><td>0.00</td><td></td><td>RW</td><td>Uni</td><td></td><td>1</td><td></td><td>US</td></tr> <tr><td>12.42 Upper current threshold 0 to 200 % 50 RW Uni 1 12.43 Lower current threshold 0 to 200 % 10 RW Uni 1 12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni 1 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 1 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni 1</td><td>12.40</td><td>Brake release indicator</td><td>OFF (0)</td><td>or On (1)</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NC</td><td>PT</td><td></td></tr> <tr><td>12.43 Lower current threshold 0 to 200 % 10 RW Uni 10 12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni 10 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 10 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni 10</td><td>12.41</td><td>Brake controller enable</td><td>dis (0), rEL (1), d</td><td>I IO (2), USEr (3)</td><td></td><td>dis (0)</td><td></td><td>RW</td><td>Txt</td><td></td><td></td><td></td><td>US</td></tr> <tr><td>12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni I 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit I 12.46 OL> Pre-brake release delay 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit I 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni I 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni I</td><td></td><td>••</td><td>0 to 200 %</td><td></td><td>50</td><td></td><td></td><td>RW</td><td>Uni</td><td></td><td></td><td></td><td>US</td></tr> <tr><td>12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni</td><td>12.43</td><td>Lower current threshold</td><td></td><td>200 %</td><td></td><td>10</td><td></td><td></td><td></td><td></td><td></td><td></td><td>US</td></tr> <tr><td>12.46 OL > Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni</td><td>12.44</td><td>Brake release frequency</td><td>0.0 to 20.0 Hz</td><td></td><td>1.0</td><td></td><td></td><td>RW</td><td>Uni</td><td></td><td></td><td></td><td>US</td></tr> <tr><td>12.46 CL> Brake apply speed delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni</td><td>12.45</td><td>Brake apply frequency / speed</td><td>0.0 to 20.0 Hz</td><td>0 to 200 rpm</td><td>2.0</td><td></td><td>5</td><td>RW</td><td>Bit</td><td></td><td></td><td></td><td>US</td></tr> <tr><td>12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni</td><td>12.46</td><td></td><td>0.0 to</td><td>25.0 s</td><td></td><td>1.0</td><td></td><td>RW</td><td>Uni</td><td></td><td></td><td></td><td>US</td></tr> <tr><td></td><td></td><td></td><td>0.0 to</td><td>25.0 s</td><td></td><td>1.0</td><td></td><td>RW</td><td>Uni</td><td> </td><td></td><td></td><td>US</td></tr> <tr><td></td><td>12.48</td><td>Brake apply delay</td><td>0.010</td><td></td><td></td><td></td><td>1.0</td><td></td><td></td><td> </td><td>-</td><td></td><td>US</td></tr> <tr><td>12.49 Enable position controller during brake release OFF (0) or On (1) OFF (0) RW Bit</td><td></td><td>Enable position controller</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>US</td></tr>	12.28	Variable selector 2 source 1	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US	12.30Variable selector 2 modesubtract (3), multiply (4), divide (5), time constant (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11)Select input 1 (0)RWUniE12.31Variable selector 2 destinationPr 0.00 to 21.51Pr 0.00RWUniDE12.32Variable selector 2 output±100.00 %ROBiNC12.33Variable selector 2 source 1 scaling±4.0001.000RWBi12.34Variable selector 2 source 2 scaling±4.0001.000RWBi12.35Variable selector 2 control0.00 to 100.00 s0.000RWUni12.40Brake release indicatorOFF (0) or On (1)RORWUni12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxt12.42Upper current threshold0 to 200 %1.0RWUni12.43Lower current threshold0.0 to 20.0 Hz1.0RWUni12.44Brake release frequency0.0 to 20.0 Hz1.0RWUni12.45Brake apply frequency / speed0.0 to 20.0 Hz1.0RWUni12.44Or-Prevarke release delay CL>0.0 to 20.0 Hz0 to 200 rpm2.05RWUni12.47Post brake release delay0.0 to 25.0 s1.0RWUni	12.29	Variable selector 2 source 2	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US	12.31 destinationdestinationPP 0.00 to 21.51PP 0.00PP	12.30	Variable selector 2 mode	subtract (3), multi time constant (6), linea powers (9), secti	ply (4), divide (5), r ramp (7), modulus (8), onal control (10),	5	Select input 1	(0)	RW	Uni				US	12.33Variable selector 2 source 1 scaling±4.0001.000RWBiI12.34Variable selector 2 source 2 scaling±4.0001.000RWBiI12.35Variable selector 2 control0.00 to 100.00 s0.00RWUniI12.40Brake release indicatorOFF (0) or On (1)RORWBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBitI12.46OL> Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI	12.31		Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US	12.33scaling±4.0001.000RWBi12.34Variable selector 2 source 2 scaling±4.0001.000RWBi12.35Variable selector 2 control0.00 to 100.00 s0.00RWUni12.40Brake release indicator0.00 to 100.00 s0.00RWUni12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxt12.42Upper current threshold0 to 200 %50RWUni12.43Lower current threshold0 to 200 %10RWUni12.44Brake release frequency0.0 to 20.0 Hz1.0RWUni12.45Brake apply frequency / speed0.0 to 20.0 Hz1.0RWUni12.46OL > Pre-brake release delay0.0 to 25.0 s1.0RWUni12.47Post brake release delay0.0 to 25.0 s1.0RWUni	12.32		±100	.00 %				RO	Bi		NC	PT		12.34 scalingscaling1.000RWBI12.35Variable selector 2 control0.00 to 100.00 s0.00RWUni12.40Brake release indicatorOFF (0) or On (1)ROBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBit12.46OL > Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI	12.33		±4.	000		1.000		RW	Bi				US	12.40Brake release indicatorOFF (0) or On (1)ROBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBitI12.46OL> Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI	12.34		±4.	000		1.000							US	12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBit12.46QL> Pre-brake release delay0.0 to 25.0 s1.0RWUniI12.47Post brake release delay0.0 to 25.0 s1.0RWUniI	12.35	Variable selector 2 control	0.00 to ²	100.00 s		0.00		RW	Uni		1		US	12.42 Upper current threshold 0 to 200 % 50 RW Uni 1 12.43 Lower current threshold 0 to 200 % 10 RW Uni 1 12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni 1 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 1 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni 1	12.40	Brake release indicator	OFF (0)	or On (1)							NC	PT		12.43 Lower current threshold 0 to 200 % 10 RW Uni 10 12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni 10 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 10 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni 10	12.41	Brake controller enable	dis (0), rEL (1), d	I IO (2), USEr (3)		dis (0)		RW	Txt				US	12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni I 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit I 12.46 OL> Pre-brake release delay 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit I 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni I 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni I		••	0 to 200 %		50			RW	Uni				US	12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni	12.43	Lower current threshold		200 %		10							US	12.46 OL > Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni	12.44	Brake release frequency	0.0 to 20.0 Hz		1.0			RW	Uni				US	12.46 CL> Brake apply speed delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni	12.45	Brake apply frequency / speed	0.0 to 20.0 Hz	0 to 200 rpm	2.0		5	RW	Bit				US	12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni	12.46		0.0 to	25.0 s		1.0		RW	Uni				US				0.0 to	25.0 s		1.0		RW	Uni				US		12.48	Brake apply delay	0.010				1.0				-		US	12.49 Enable position controller during brake release OFF (0) or On (1) OFF (0) RW Bit		Enable position controller						-					US
12.28	Variable selector 2 source 1	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US																																																																																																																																																																																																																																															
12.30Variable selector 2 modesubtract (3), multiply (4), divide (5), time constant (6), linear ramp (7), modulus (8), powers (9), sectional control (10), external rectifier monitor (11)Select input 1 (0)RWUniE12.31Variable selector 2 destinationPr 0.00 to 21.51Pr 0.00RWUniDE12.32Variable selector 2 output±100.00 %ROBiNC12.33Variable selector 2 source 1 scaling±4.0001.000RWBi12.34Variable selector 2 source 2 scaling±4.0001.000RWBi12.35Variable selector 2 control0.00 to 100.00 s0.000RWUni12.40Brake release indicatorOFF (0) or On (1)RORWUni12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxt12.42Upper current threshold0 to 200 %1.0RWUni12.43Lower current threshold0.0 to 20.0 Hz1.0RWUni12.44Brake release frequency0.0 to 20.0 Hz1.0RWUni12.45Brake apply frequency / speed0.0 to 20.0 Hz1.0RWUni12.44Or-Prevarke release delay CL>0.0 to 20.0 Hz0 to 200 rpm2.05RWUni12.47Post brake release delay0.0 to 25.0 s1.0RWUni	12.29	Variable selector 2 source 2	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US																																																																																																																																																																																																																																														
12.31 destinationdestinationPP 0.00 to 21.51PP 0.00PP	12.30	Variable selector 2 mode	subtract (3), multi time constant (6), linea powers (9), secti	ply (4), divide (5), r ramp (7), modulus (8), onal control (10),	5	Select input 1	(0)	RW	Uni				US																																																																																																																																																																																																																																														
12.33Variable selector 2 source 1 scaling±4.0001.000RWBiI12.34Variable selector 2 source 2 scaling±4.0001.000RWBiI12.35Variable selector 2 control0.00 to 100.00 s0.00RWUniI12.40Brake release indicatorOFF (0) or On (1)RORWBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBitI12.46OL> Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI	12.31		Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US																																																																																																																																																																																																																																														
12.33scaling±4.0001.000RWBi12.34Variable selector 2 source 2 scaling±4.0001.000RWBi12.35Variable selector 2 control0.00 to 100.00 s0.00RWUni12.40Brake release indicator0.00 to 100.00 s0.00RWUni12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxt12.42Upper current threshold0 to 200 %50RWUni12.43Lower current threshold0 to 200 %10RWUni12.44Brake release frequency0.0 to 20.0 Hz1.0RWUni12.45Brake apply frequency / speed0.0 to 20.0 Hz1.0RWUni12.46OL > Pre-brake release delay0.0 to 25.0 s1.0RWUni12.47Post brake release delay0.0 to 25.0 s1.0RWUni	12.32		±100	.00 %				RO	Bi		NC	PT																																																																																																																																																																																																																																															
12.34 scalingscaling1.000RWBI12.35Variable selector 2 control0.00 to 100.00 s0.00RWUni12.40Brake release indicatorOFF (0) or On (1)ROBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBit12.46OL > Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI	12.33		±4.	000		1.000		RW	Bi				US																																																																																																																																																																																																																																														
12.40Brake release indicatorOFF (0) or On (1)ROBitNC12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBitI12.46OL> Pre-brake release delay0.0 to 25.0 s1.0RWUniII12.47Post brake release delay0.0 to 25.0 s1.0RWUniI	12.34		±4.	000		1.000							US																																																																																																																																																																																																																																														
12.41Brake controller enabledis (0), rEL (1), d IO (2), USEr (3)dis (0)RWTxtI12.42Upper current threshold0 to 200 %50RWUniI12.43Lower current threshold0 to 200 %10RWUniI12.44Brake release frequency0.0 to 20.0 Hz1.0RWUniI12.45Brake apply frequency / speed0.0 to 20.0 Hz0 to 200 rpm2.05RWBit12.46QL> Pre-brake release delay0.0 to 25.0 s1.0RWUniI12.47Post brake release delay0.0 to 25.0 s1.0RWUniI	12.35	Variable selector 2 control	0.00 to ²	100.00 s		0.00		RW	Uni		1		US																																																																																																																																																																																																																																														
12.42 Upper current threshold 0 to 200 % 50 RW Uni 1 12.43 Lower current threshold 0 to 200 % 10 RW Uni 1 12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni 1 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 1 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni 1	12.40	Brake release indicator	OFF (0)	or On (1)							NC	PT																																																																																																																																																																																																																																															
12.43 Lower current threshold 0 to 200 % 10 RW Uni 10 12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni 10 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 10 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni 10	12.41	Brake controller enable	dis (0), rEL (1), d	I IO (2), USEr (3)		dis (0)		RW	Txt				US																																																																																																																																																																																																																																														
12.44 Brake release frequency 0.0 to 20.0 Hz 1.0 RW Uni I 12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit I 12.46 OL> Pre-brake release delay 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit I 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni I 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni I		••	0 to 200 %		50			RW	Uni				US																																																																																																																																																																																																																																														
12.45 Brake apply frequency / speed 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 20.0 Hz 0 to 200 rpm 2.0 5 RW Bit 12.46 OL> Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni	12.43	Lower current threshold		200 %		10							US																																																																																																																																																																																																																																														
12.46 OL > Pre-brake release delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni	12.44	Brake release frequency	0.0 to 20.0 Hz		1.0			RW	Uni				US																																																																																																																																																																																																																																														
12.46 CL> Brake apply speed delay 0.0 to 25.0 s 1.0 RW Uni 12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni	12.45	Brake apply frequency / speed	0.0 to 20.0 Hz	0 to 200 rpm	2.0		5	RW	Bit				US																																																																																																																																																																																																																																														
12.47 Post brake release delay 0.0 to 25.0 s 1.0 RW Uni	12.46		0.0 to	25.0 s		1.0		RW	Uni				US																																																																																																																																																																																																																																														
			0.0 to	25.0 s		1.0		RW	Uni				US																																																																																																																																																																																																																																														
	12.48	Brake apply delay	0.010				1.0				-		US																																																																																																																																																																																																																																														
12.49 Enable position controller during brake release OFF (0) or On (1) OFF (0) RW Bit		Enable position controller						-					US																																																																																																																																																																																																																																														


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

h	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

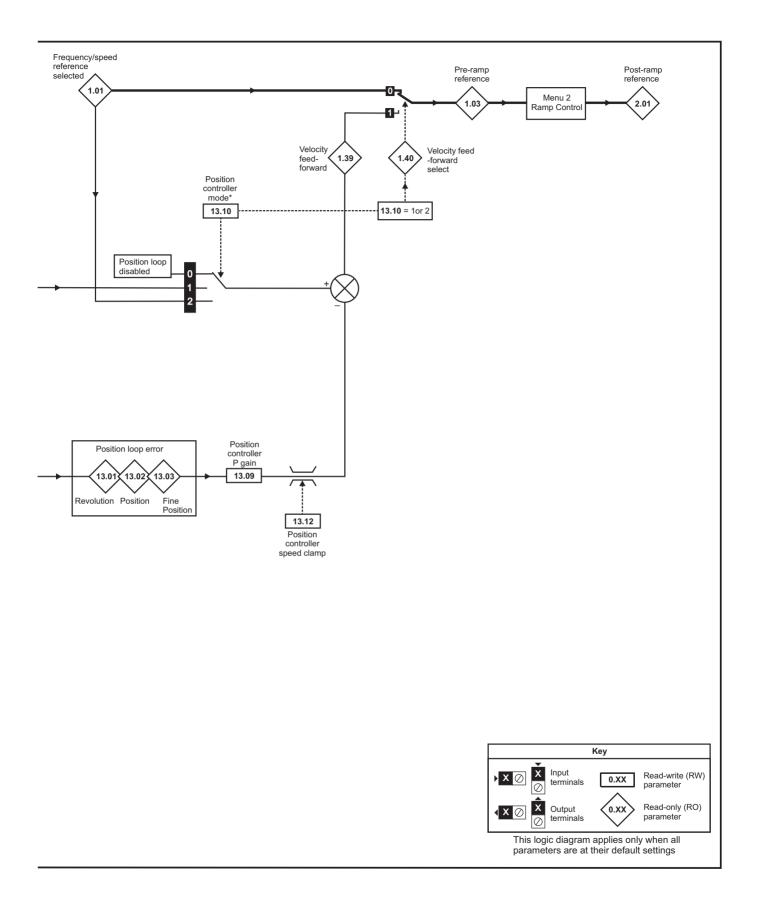
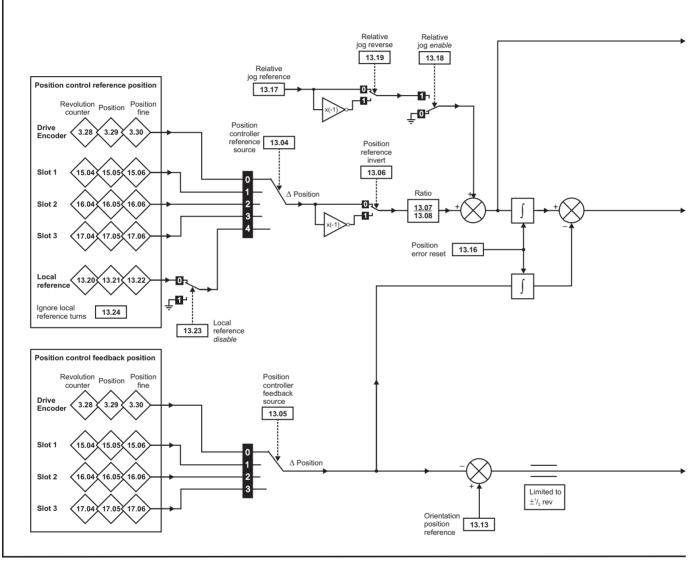

11.13 Menu 13: Position control

Figure 11-21 Menu 13 Open-loop logic diagram


^{*}For more information, refer to section 11.21.9 Position modes on page 231.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

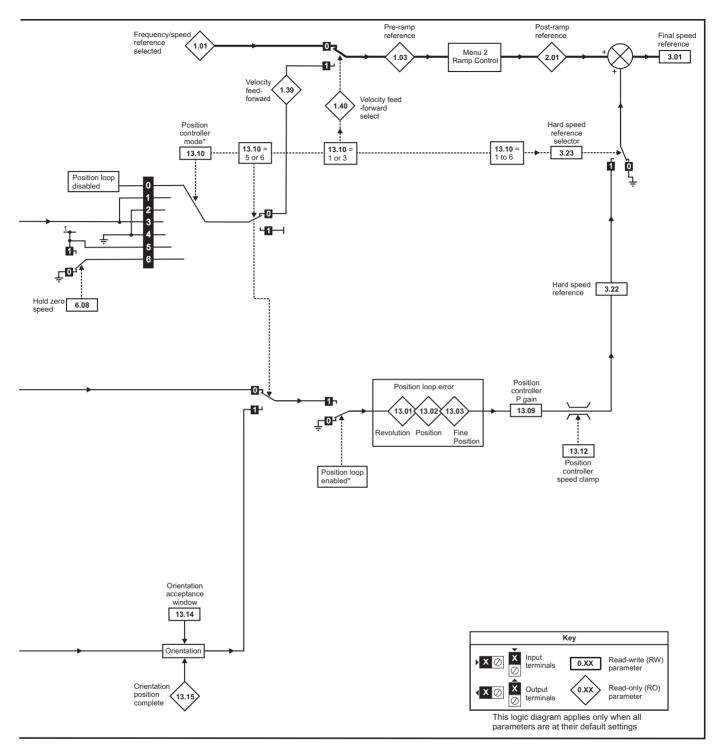

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Figure 11-22 Menu 13 Closed-loop logic diagram

*For more information, refer to section 11.21.9 Position modes on page 231.

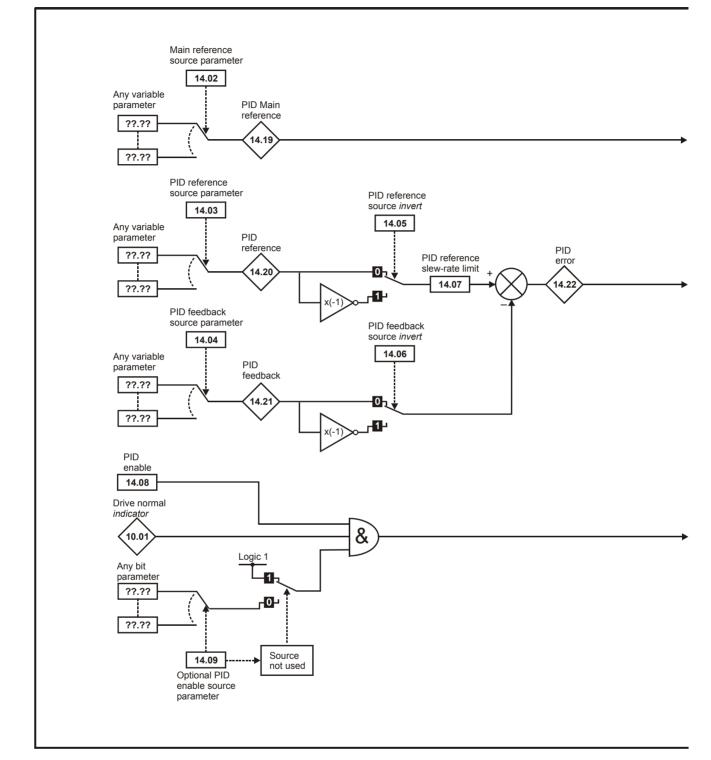
Diagnostics	Safety Information			0		Optimization		PLC			Diagnostics	UL Listing Information
-------------	-----------------------	--	--	---	--	--------------	--	-----	--	--	-------------	---------------------------

* The position controller is disabled and the error integrator is also reset under the following conditions:

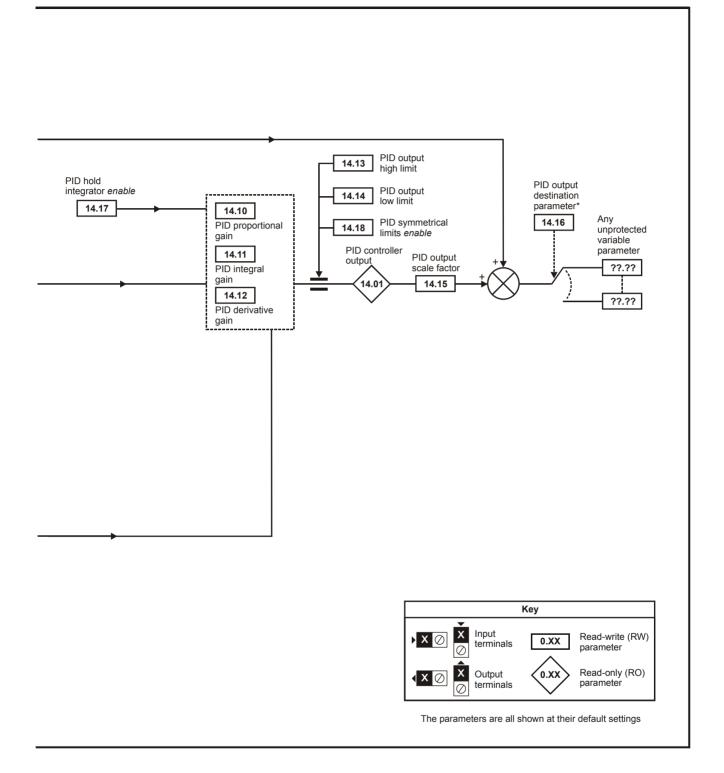
- 1. If the drive is disabled (i.e. inhibited, ready or tripped)
- 2. If the position controller mode (Pr **13.10**) is changed. The position controller is disabled transiently to reset the error integrator.
- 3. The absolute mode parameter (Pr **13.11**) is changed. The position controller is disabled transiently to reset the error integrator.
- 4. One of the position sources is invalid.
- 5. The position feedback initialised parameter (Pr 3.48) is zero.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Parameter		Ran	C	Туре								
	Falameter	OL	OL VT SV			туре						
13.01	Revolutions error	-32,768				RO	Bi		NC	PT	_	
13.02	Position error	-32,768	to +32,767				RO	Uni		NC	PT	
13.03	Fine position error	-32,768	to +32,767				RO	Uni		NC	PT	
13.04	Position controller reference source	drv (0), Slot1 (1), Loc	drv (0)			RW	Uni				US	
13.05	Position controller feedback source	drv (0), Slot1 (1),	, Slot2 (2), Slot3 (3)	drv (0)				Uni				US
13.06	Position reference invert	OFF (0)) or On (1)	OFF (0)				Bit				US
13.07	Ratio numerator	0.000	to 4.000			RW	Uni				US	
13.08	Ratio denominator	0.000	to 1.000	1.000				Uni				US
13.09	Position controller P gain	0.00 to 100	.00 rad s ⁻¹ / _{rad}	25.00			RW	Uni				US
13.10	Position controller mode	Position controller disabled (0) Rigid position control - feed fwd (1) Rigid position control (2)	Position controller disabled (0) Rigid position control - feed fwd (1) Rigid position control (2) Non-rigid position control - feed fwd (3) Non-rigid position control (4) Orientation on stop (5) Orientation on stop and when drive enabled (6)	Position controller disabled (isabled (0)	RW	Uni				US
13.11	Absolute mode enable	OFF (0	OFF (0)			RW	Bit				US	
13.12	Position controller speed clamp	0 to 2	150			RW	Uni				US	
13.13	Orientation position reference		0 to 65,535		(0	RW	Uni				US
13.14	Orientation acceptance window		0 to 4,096		2	56	RW	Uni				US
13.15	Orientation position complete		OFF (0) or On (1)				RO	Bit		NC	PT	
13.16	Position error reset	OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
13.17	Relative jog reference	0.0 to 4	,000.0 rpm		0.0		RW	Uni		NC		
13.18	Relative jog enable	OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
13.19	Relative jog reverse	OFF (0)) or On (1)		OFF (0)		RW	Bit		NC		
13.20	Local reference turns	0 to	65,535		0		RW	Uni		NC		
13.21	Local reference position	0 to	0			RW	Uni		NC			
13.22	Local reference fine position	0 to	0			RW	Uni		NC			
13.23	Local reference disable	OFF (0)) or On (1)	OFF (0)			RW	Bit		NC		
13.24	Ignore local reference turns	OFF (0)) or On (1)		OFF (0)		RW	Bit				US


RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

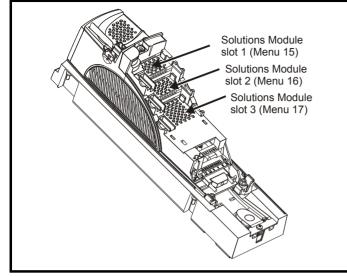

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	------------------------	-------------------	-------------	---------------------------

11.14 Menu 14: User PID controller

Figure 11-23 Menu 14 Logic diagram

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Runningthe motor Optimiza	ion SMARTCARD operation PLC Advanced parameters Data Diagnostics UL Listing Information
--	---


	Parameter	Ranç	je(‡)		Default(⇔)				Ту	pe		
	rarameter	OL	CL	OL	VT	sv			ij	pe		
14.01	PID control output	±100.	00 %				RO	Bi		NC	PT	
14.02	PID main reference source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US
14.03	PID reference source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US
14.04	PID feedback source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni			PT	US
14.05	PID reference source invert	OFF (0)	or On (1)		OFF (0)		RW	Bit	1			US
14.06	PID feedback source invert	OFF (0)	or On (1)		OFF (0)		RW	Bit	1			US
14.07	PID reference slew-rate limit	0.0 to 3	,200.0 s		0.0		RW	Uni			\square	US
14.08	PID enable	OFF (0)	or On (1)		OFF (0)		RW	Bit	1			US
14.09	PID optional enable source	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	1		PT	US
14.10	PID proportional gain	0.000 t	o 4.000		1.000		RW	Uni			\square	US
14.11	PID integral gain	0.000 t	o 4.000		0.500		RW	Uni				US
14.12	PID derivative gain	0.000 t	o 4.000		0.000		RW	Uni	1			US
14.13	PID upper limit	0.00 to 1	00.00 %		100.00		RW	Uni			\square	US
14.14	PID lower limit	±100	.00 %		-100.00		RW	Bi			\square	US
14.15	PID output scaling factor	0.000 t	o 4.000		1.000		RW	Uni				US
14.16	PID output destination	Pr 0.00	to 21.51		Pr 0.00		RW	Uni	DE		PT	US
14.17	PID hold integrator enable	OFF (0)	or On (1)		OFF (0)		RW	Bit		NC		
14.18	PID symmetrical limits enable	OFF (0)	or On (1)		OFF (0)		RW	Bit	1			US
14.19	PID main reference	±100	.00 %				RO	Bi	1	NC	PT	1
14.20	PID reference	±100	.00 %				RO	Bi	1	NC	PT	-
14.21	PID feedback	±100	.00 %				RO	Bi	1	NC	PT	
14.22	PID error	±100	.00 %				RO	Bi	1	NC	PT	-

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					•								

11.15 Menus 15, 16 and 17: Solutions Module set-up

Figure 11-24 Location of Solutions Module slots and their corresponding menu numbers

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

11.15.1 Parameters common to all categories

	Parameter	Range(≎)	Default(⇔)			Тур	De		
x.01	Solutions Module ID	0 to 599		RO	Uni			PT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.50	Solutions Module error status	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

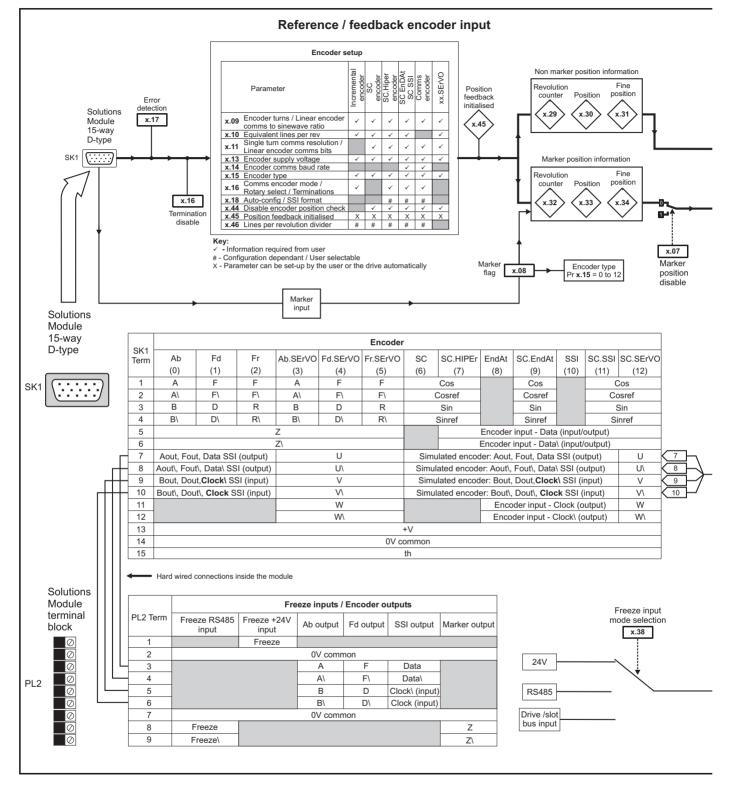
The Solutions Module ID indicates the type of module that is installed in the corresponding slot.

Solutions Module ID	Module	Category
0	No module installed	
101	SM-Resolver	
102	SM-Universal Encoder Plus	Feedback
104	SM-Encoder Plus / SM-Encoder Output Plus	T CCUBACK
201	SM-I/O Plus	
203	SM-I/O Timer	
204	SM-I/O PELV	Automation (1/O
205	SM-I/O 24V Protected	Automation (I/O Expansion)
206	SM-I/O 120V	
207	SM-I/O Lite	
208	SM-I/O 32	
301	SM-Applications	
302	SM-Applications Lite	Automation
303	SM-EZMotion	(Applications)
304	SM-Applications Plus	(Applications)
305	SM-Applications Lite V2	
401	SM-LON	
403	SM-PROFIBUS-DP	
404	SM-INTERBUS	
406	SM-CAN	
407	SM-DeviceNet	Fieldbus
408	SM-CANopen	
409	SM-SERCOS	
410	SM-Ethernet	
421	SM-EtherCAT	
501	SM-SLM	SLM

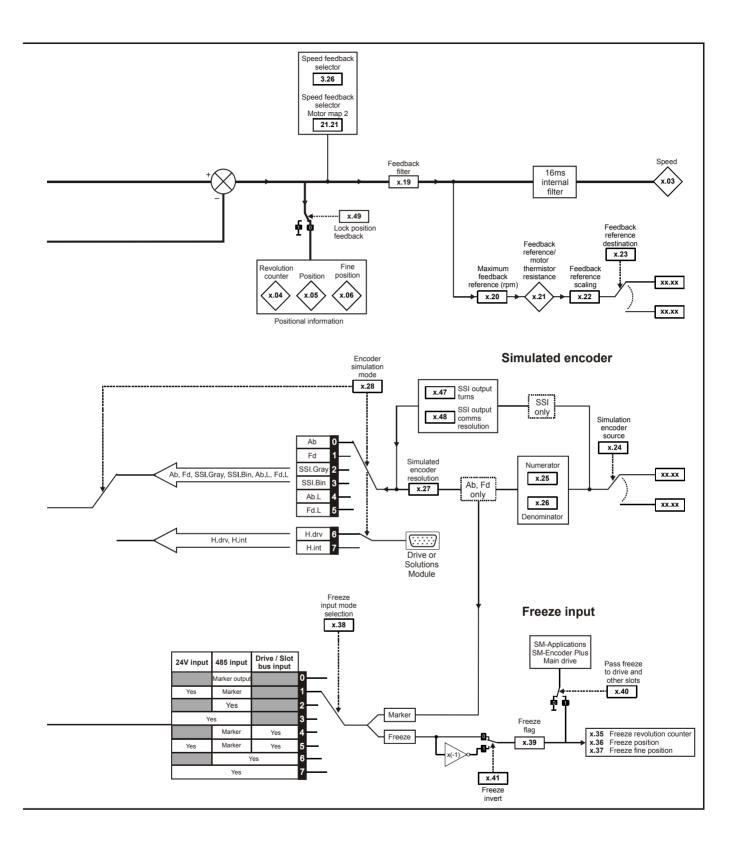
Solutions Module software

Most Solutions Modules contain software. The software version of the module can be checked by looking at Pr x.02 and Pr x.51.

The software version takes the form of zz.yy.xx, where Pr x.02 displays zz.yy and Pr x.51 displays xx. I.e. for software version 01.01.00, Pr x.02 would display 1.01 and Pr x.51 would display 0


The SM-Resolver, SM-Encoder Plus, SM-Encoder Output Plus and SM-I/O Plus modules do not contain any software, so Pr **x.02** and Pr **x.51** either show 0 (software V01.07.01 and earlier) or the parameters do not appear (software V01.08.00 and later).

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

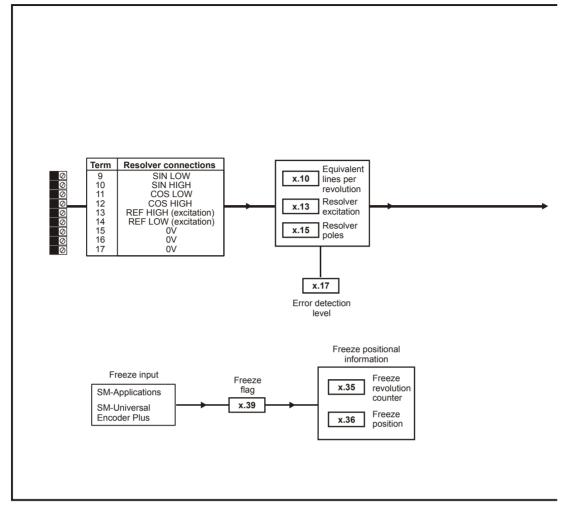

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

11.15.2 Feedback module category

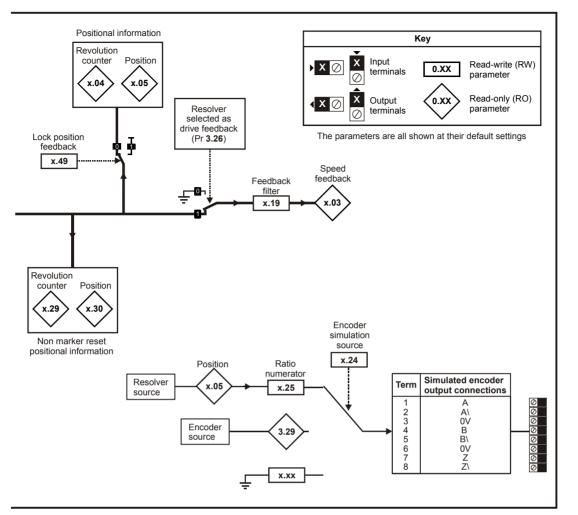
Figure 11-25 SM-Universal Encoder Plus logic diagram

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

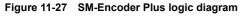
		Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

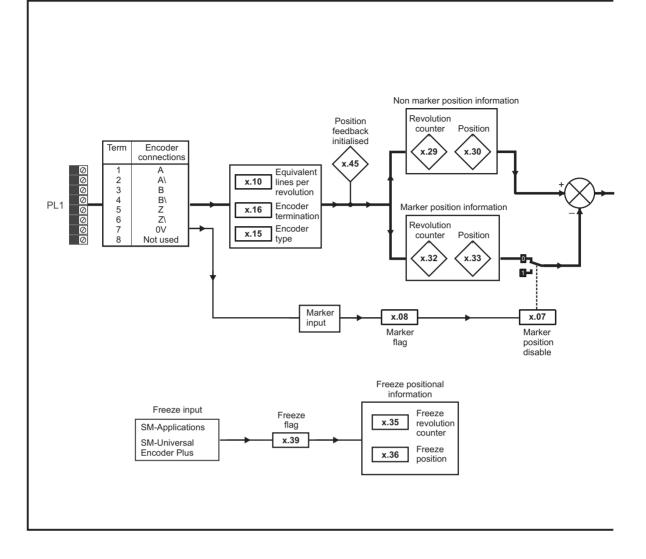

SM-Universal Encoder Plus parameters

	Parameter	R	ange	(①)		Defau	ult(⇔)				Ту	ре		
x.01	Solutions Module ID		0 to 59	99	1	10)2		RO	Uni			ΡT	US
x.02	Solutions Module software version		00 to 9						RO	Uni		NC	PT	
x.03	Speed),000.0	•					RO	Bi	FI	NC		
x.04	Revolution counter			volutions					RO	Uni		NC		
x.05	Position			of a revolution)					RO	Uni	FI	NC		
x.06	Fine position	0 to 65,535 (1/	2 ³² nds	s of a revolution)					RO	Uni	FI	NC	PT	
x.07	Marker position reset disable	OFF	(0) or	On (1)		OFF			RW	Bit				US
x.08	Marker flag	OFF	(0) or	On (1)		OFF	= (0)		RW	Bit		NC		
x.09	Encoder turns/ linear encoder comms	0	to 16	bits		1	6		RW	Uni				US
	to sine wave ratio									_				
x.10	Equivalent lines per revolution	0	to 50,0	000	_	40	96		RW	Uni				US
x.11	Single turn comms bits/ linear encoder comms bits	0	to 32	bits		()		RW	Uni				US
x.12	Motor thermistor check <i>enable</i>	OFF	(0) or	On (1)	-	OFF	- (0)		RW	Bit				US
x.13	Encoder supply voltage		• •	, 15V (2)	-	5V	()		RW	Uni				US
), 400 (3), 500 (4),	-		. ,							
x.14	Encoder comms baud rate			6), 2,000 (7)		300	(2)		RW	Txt				US
x.15	Encoder type	Fd.SErVO (4), SC.HiPEr (7), E	Fr.SE	, Ab.SErVO (3), rVO (5), SC (6), 8), SC.EndAt (9),), SC.UVW (12)		Ab	(0)		RW	Uni				US
x.16	Rotary encoder select/ comms only		0 to 2	2			1		RW	Uni				US
x.17	encoder mode/ terminations Error detection level		0 to 7	7			1		RW	Uni				US
	Auto configuration/ SSI binary format				-		-							
x.18	select	OFF	(0) or	On (1)	Í	OFF	= (0)		RW	Bit				US
x.19	Feedback filter			0 to 5 (0 to 16 ms)	1	()		RW	Uni				US
x.20	Maximum feedback reference	0.0 to	40,00	0.0 rpm		150	0.0		RW	Uni				US
x.21	Feedback reference/ motor thermistor resistance	t	100.0	%					RO	Bi		NC	PT	
x.22	Feedback reference scaling	0.0	00 to 4	1.000		1.0	000		RW	Uni				US
x.23	Feedback reference destination	Pr 0.0	10 to P	r 21.51		Pr (0.00		RW	Uni	DE		PT	US
x.24	Encoder simulation source	Pr 0. (00 to P	r 21.51		Pr (0.00		RW	Uni			PT	US
x.25	Encoder simulation ratio numerator		00 to 3			0.2			RW	Uni				US
x.26	Encoder simulation ratio denominator		00 to 3				000		RW	Uni				US
x.27	Encoder simulation resolution select			On (1)		OFF	= (0)		RW	Bit		NC		
x.28	Encoder simulation mode	Ab.L (4), Fd.L	(5), H-	ay (2), SSI.Bin (3), drv (6), H-int (7)		Ab	(0)		RW	Txt				US
x.29	Non-marker reset revolution counter			volutions					RO	Uni		NC		
x.30	Non-marker reset position	0 to 65,535 (1	/2 ¹⁶ ths	of a revolution)					RO	Uni		NC	PT	
x.31	Non-marker reset fine position	0 to 65,535 (1/	2 ³² nds	s of a revolution)					RO	Uni		NC	PT	
x.32	Marker revolution counter	0 to 65	535 re	volutions					RO	Uni		NC	PT	
x.33	Marker position	0 to 65,535 (1	/2 ¹⁶ ths	of a revolution)					RO	Uni		NC	PT	
x.34	Marker fine position	0 to 65 535 (1)	2 ³² nds	s of a revolution)					RO	Uni		NC	PT	
	Freeze revolution counter			volutions	_				RO			NC		
x.36	Freeze position			of a revolution)					RO	Uni		NC		
	Freeze fine position				_				RO	Uni		NC		
x.37	Freeze line position			s of a revolution) 24V input	_				RU	011		NC	FI	
x.38	Freeze input mode selection	Bit 1 =	EÍA4	24 v Input 85 input her Solutions Module			1		RW	Uni				US
x.39	Freeze flag	OFF	(0) or	On (1)	1	OFF	- (0)		RW	Bit		NC		
x.40	Pass freeze to drive and other slots			On (1)		OFF	- (0)		RW	Bit	1	NC		US
x.41	Freeze invert	OFF	(0) or	On (1)	T	OFF			RW	Bit				US
x.42	Encoder comms transmit register/ Sin signal value	0	to 65,	535		()		RW	Uni		NC		
x.43	Encoder comms receive register/ Cos signal value	0	to 65,	535		()		RW	Uni		NC		
x.44	Disable encoder position check		· ·	On (1)		OFF	(0)		RW	Bit		NC		
x.45	Position feedback initialised		· /	On (1)					RO	Bit		NC	PT	
x.46	Lines per revolution divider		l to 10				1		RW	Uni				US
x.47	SSI output turns		to 16 I				6		RW	Uni				US
x.48	SSI output comms resolution		to 32)		RW	Uni				US
x.49	Lock position feedback		()	On (1)		OFF	- (0)		RW	Bit				
x.50	Solutions Module error status*		0 to 25						RO	Uni		NC		
x.51	Solutions Module software sub-version		0 to 9	9					RO	Uni		NC	۲I	
RW F	Read / Write RO Read only U	ni Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string						
	Filtered DE Destination N		RA	Rating dependent	PT	Protected	US	User save	F	PS	Powe	er dov	vn s	ave
	ip SLX.Er, Feedback module catego					<u>.</u>		1					-	_

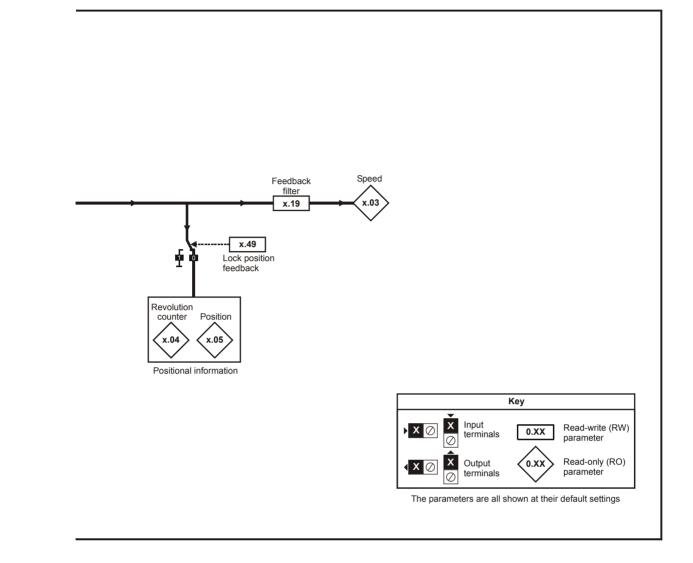

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

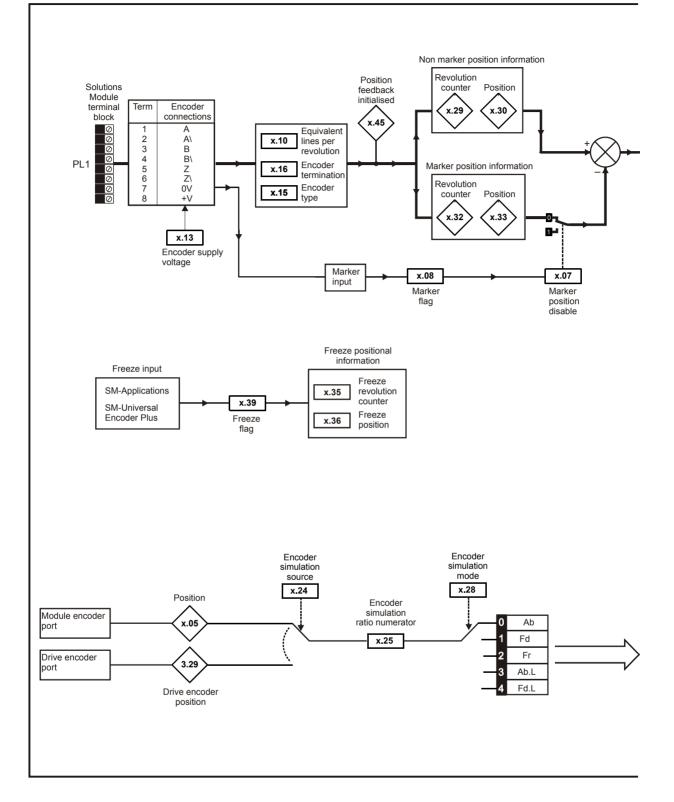



SM-Resolver parameters

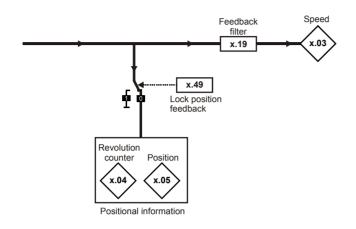
	Pa	ramet	er		F	Range	(\$)		Defa	ult(⇔)				Ту	ре		
x.01	Solutions Mo	dule II	D	1		0 to 59	99	1	1	01		RO	Uni			PT	US
x.03	Speed				±4	0,000.0) rpm					RO	Bi	FI	NC	PT	
x.04	Revolution c	ounter			0 to 65	i,535 re	evolutions					RO	Uni	FI	NC	PT	
x.05	Position				0 to 65,535 1	1/2 ¹⁶ ths	s of a revolution					RO	Uni	FI	NC	PT	
x.10	Equivalent li	nes pei	revolution		C) to 50,	000		4()96		RW	Uni				US
x.13	Resolver exc	citation			3:1 (0), 2:1	(1 or 2)		3:1	(0)		RW	Uni				US
x.15	Resolver pol	es				4 pole (ole (3 t	(1), 6 pole (2), to 12)		2 pc	le (0)		RW	Uni				US
x.17	Error detecti	on leve	el .	E	Bit 0 (LSB) = Wire Bit 1 = Not used Bit 2 (MSB) = Not		detect			1		RW	Uni				US
x.19	Feedback fil	ter			0 (0), 1 (1), 2 (2	2), 4 (3)), 8 (4), 16 (5) ms			0		RW	Txt				US
x.24	Encoder sim	ulation	source		Pr 0 .	00 to F	Pr 21.51		Pr	0.00		RW	Uni			PT	US
x.25	Encoder sim	ulation	ratio numerator		0.00	000 to 3	3.0000		0	.25		RW	Uni				US
x.29	Non-marker	reset r	evolution counte	r	0 to 65	i,535 re	evolutions					RO	Uni		NC	PT	
x.30	Non-marker	reset p	osition		0 to 65,535 1	1/2 ¹⁶ ths	s of a revolution					RO	Uni		NC	PT	
x.35	Freeze revol	ution c	ounter		0 to 65	i,535 re	evolutions					RO	Uni		NC	PT	
x.36	Freeze posit	ion			0 to 65,535 1	1/2 ¹⁶ ths	s of a revolution					RO	Uni		NC	PT	
x.39	Freeze flag				OFF	(0) or	On (1)		OF	F (0)		RW	Bit		NC		
x.45	Position feed	lback i	nitialised		OFF	(0) or	On (1)					RO	Bit		NC	PT	
x.49	Lock position	n feedb	ack		OFF	⁼ (0) or	On (1)		OF	F (0)		RW	Bit		NC		
x.50	Solutions Mo	dule e	rror status*			0 to 2	55					RO	Uni		NC	PT	
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string						
	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save		'S	Dow	er dov		21/0

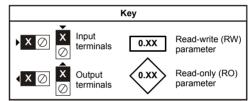

*See trip SLX.Er, Feedback module category on page 285.

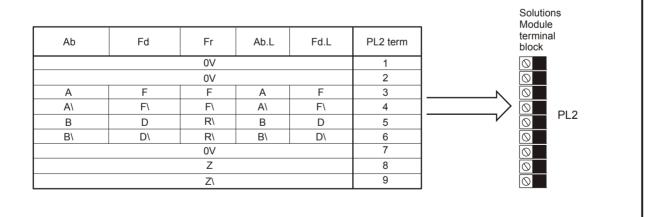
Information Installation Installation Started parameters motor Optimization operation PLC parameters Data Disgussions Information	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	-----------------------	---------------------	----------------------------	----------------------------	--------------------	--	----------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------



Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					-			-					




Information Installation Installation Installation Started parameters motor Opunization operation PLC parameters Data Diagnostics Information	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------



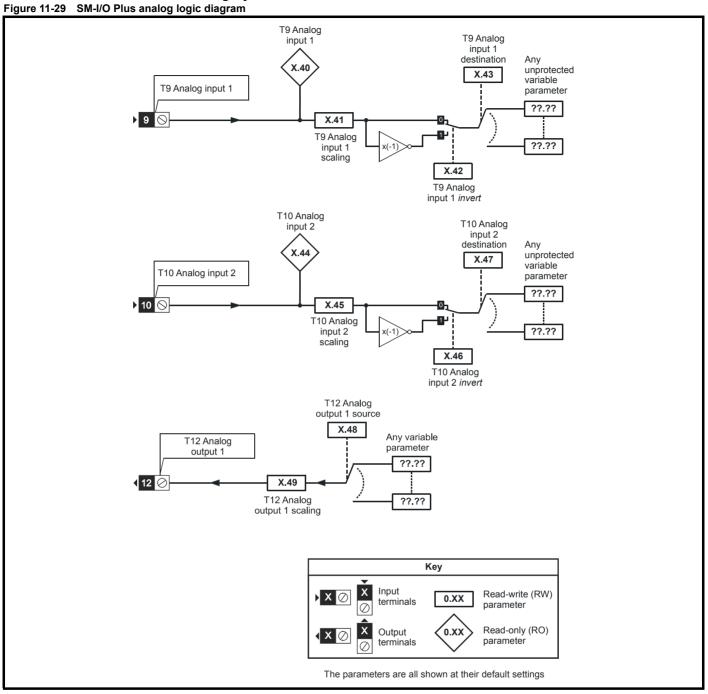
Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					•			•					

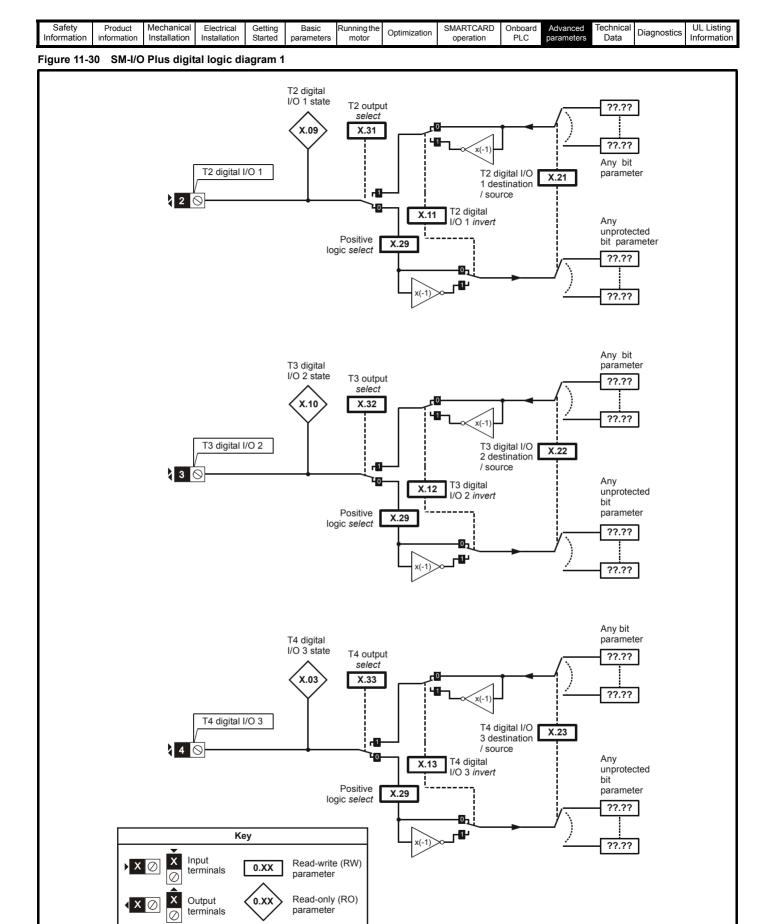
The parameters are all shown at their default settings

Optimization	Safety Information	Product information	Mechanical Installation		Getting Started		Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters		Diagnostics	UL Listing Information
--------------	-----------------------	------------------------	----------------------------	--	--------------------	--	-------------------	--------------	---------------------	----------------	---------------------	--	-------------	---------------------------

SM-Encoder Plus / SM-Encoder Output Plus parameters

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 599	104	RO	Uni			PT	US
x.03	Speed feedback	±40,000.0 rpm		RO	Bi	FI	NC	PT	
x.04	Revolution counter	0 to 65,535 revolutions		RO	Uni	FI	NC	PT	
x.05	Position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni	FI	NC	PT	
x.07	Marker position reset disable	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.08	Marker flag	OFF (0) or On (1)	OFF (0)	RW	Bit		NC		
x.10	Equivalent lines per revolution	0 to 50,000	4,096	RW	Uni				US
x.13*	Encoder supply voltage	0: 5V, 1: 8V, 2: 15V	0	RW	Uni				US
x.15	Encoder type	Ab (0), Fd (1), Fr (2 to 12)	Ab (0)	RW	Uni				US
x.16	Encoder termination	0 to 2	1	RW	Bit				US
x.19	Feedback filter	0 to 5 (0 to 16 ms)	0	RW	Uni				US
x.24*	Encoder simulation source	Pr 0.00 to Pr 21.51	0.00	RW	Uni			PT	US
x.25*	Encoder simulation ratio numerator	0.0000 to 3.0000	0.2500	RW	Uni				US
x.28*	Encoder simulation mode	0: Ab, 1: Fd, 2: Fr, 3: Ab with marker lock, 4 to 7: Fd with marker lock	0	RW	Uni				US
x.29	Non-marker reset revolution counter	0 to 65,535 revolutions		RO	Uni		NC	PT	
x.30	Non-marker reset position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni		NC	PT	
x.32	Marker revolution counter	0 to 65,535 revolutions		RO	Uni		NC	PT	
x.33	Marker position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni		NC	PT	
x.35	Freeze revolution counter	0 to 65,535 revolutions		RO	Uni		NC	PT	
x.36	Freeze position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni		NC	PT	
x.39	Freeze flag	OFF (0) or On (1)	OFF (0)	RW	Bit		NC		
x.45	Position feedback initialised	OFF (0) or On (1)		RO	Bit		NC	PT	
x.49	Lock position feedback	OFF (0) or On (1)		RW	Bit				
x.50	Solutions Module error status**	0 to 255		RO	Uni		NC	PT	

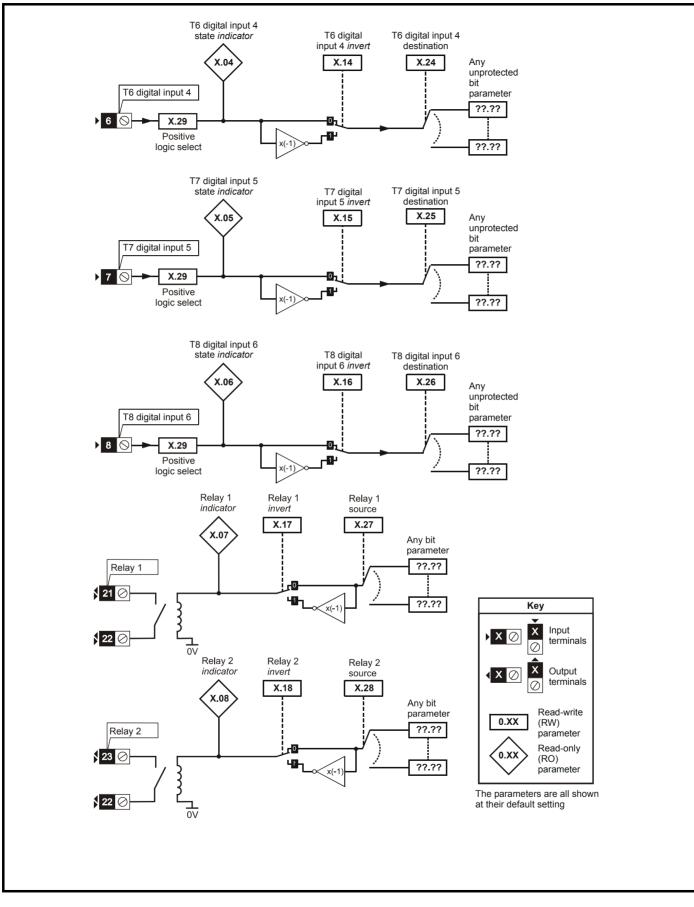

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save


*Pr x.13, Pr x.24, Pr x.25 and Pr x.28 are only used when operating with a SM-Encoder Output Plus module. These parameters are not used when operating with a SM-Encoder Plus module

**See trip SLX.Er, Feedback module category on page 285.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

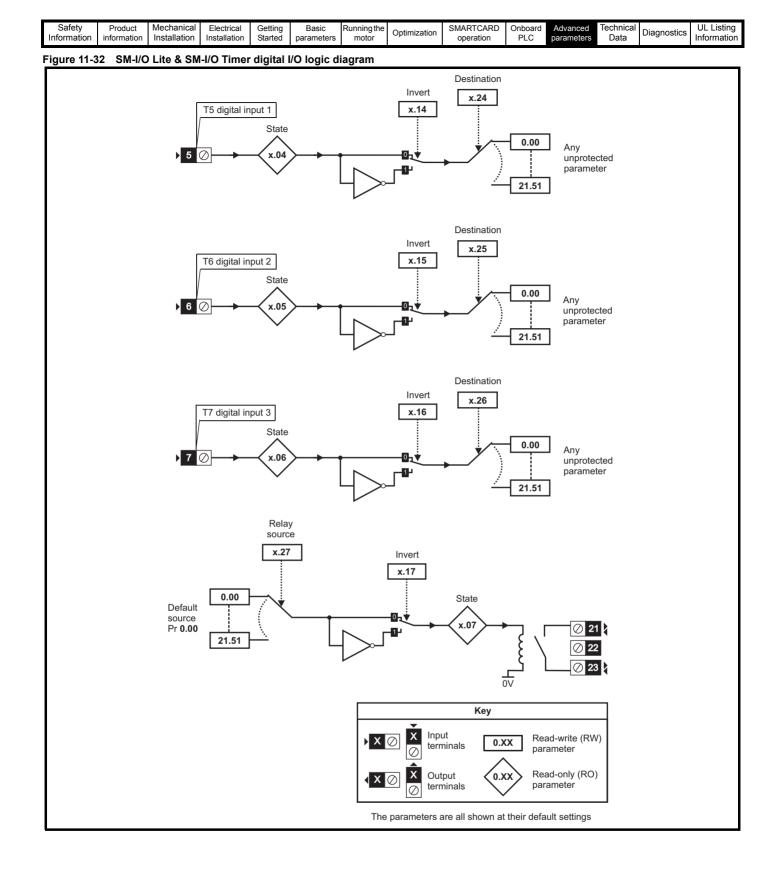
11.15.3 Automation module category

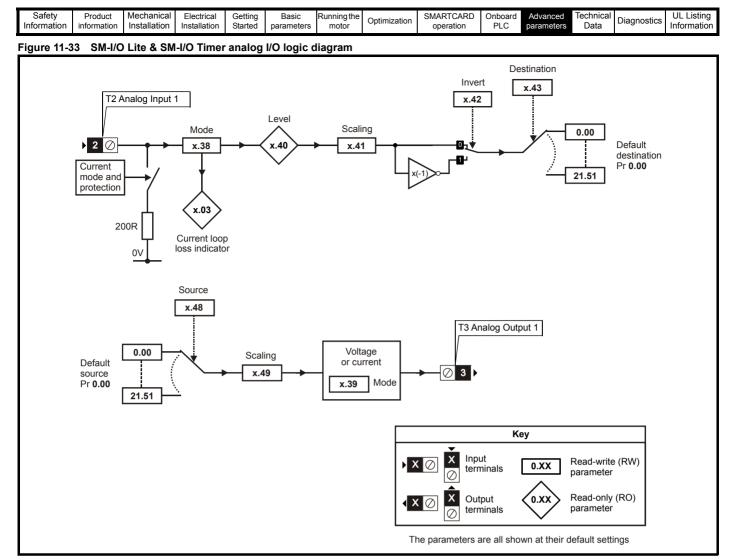


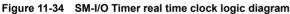
The parameters are all shown at their default setting

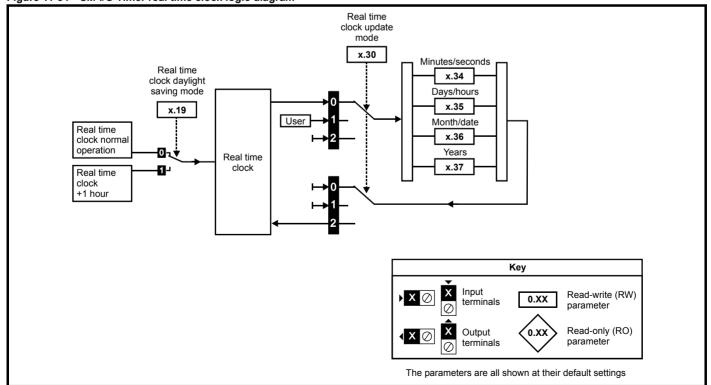
Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Running the motor Optimization	SMARTCARD Onboard Advanced parameters Data Diagnostics Information
---	--

Figure 11-31 SM-I/O Plus digital logic diagram 2

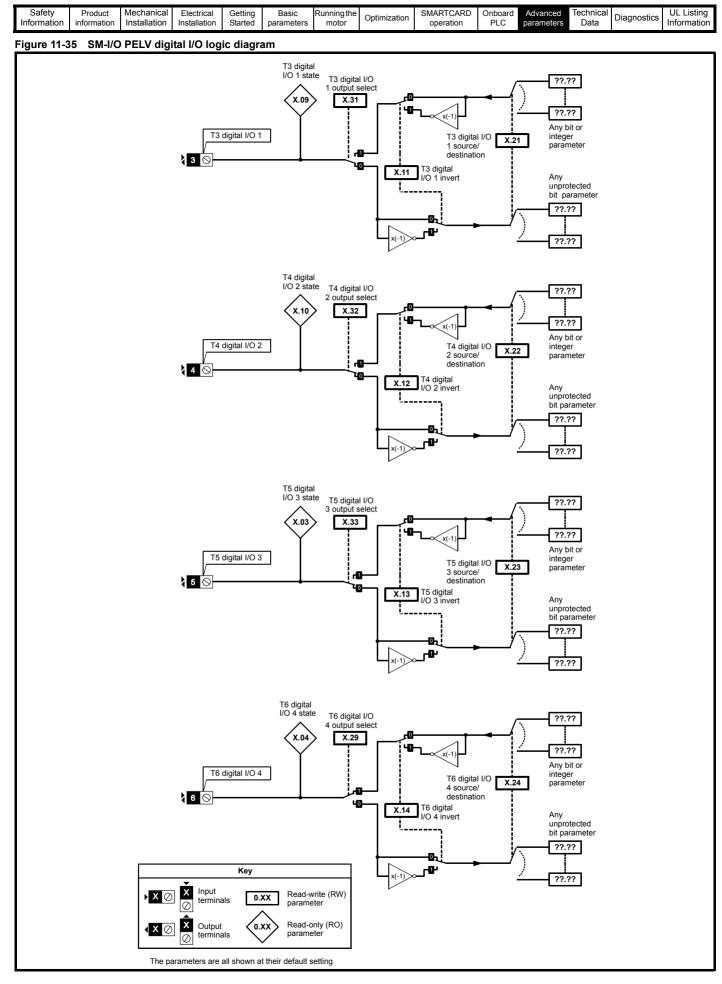


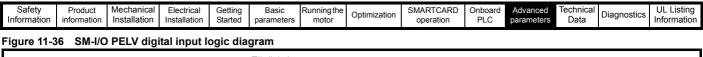

Safety Product Mechanical Electrical Getting Basic Running the motor Optimizati Information installation Installation Started parameters motor Optimizati	on SMARTCARD Onboard Advanced Technical Diagnostics UL Listing Information
--	--

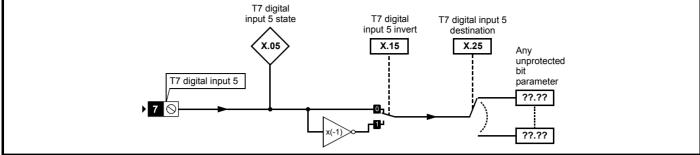

SM-I/O Plus parameters


	Parameter	Range(‡)	Default(⇔)	Туре					
x.01	Solutions Module ID	0 to 599	201	RO	Uni			PT	US
x.03	T4 digital I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T6 digital input 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.06	T8 digital input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.09	T2 digital I/O 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.10	T3 digital I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T2 digital I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T3 digital I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T4 digital I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T6 digital input 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	T8 digital input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 511		RO	Uni		NC	PT	
x.21	T2 digital I/O 1 source/ destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.22	T3 digital I/O 2 source/ destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.23	T4 digital I/O 3 source/ destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.24	T6 digital input 4 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.26	T8 digital input 6 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.27	Relay 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.28	Relay 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.29	Input polarity select	OFF (0) or On (1)	On (1) (positive logic)	RW	Bit			PT	US
x.31	T2 digital I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	T3 digital I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.33	T4 digital I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.40	Analog input 1	±100.0%		RO	Bi		NC	PT	
x.41	Analog input 1 scaling	0 to 4.000	1.000	RW	Uni				US
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.43	Analog input 1 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.44	Analog input 2	±100.0%		RO	Bi		NC	PT	
x.45	Analog input 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.46	Analog input 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.47	Analog input 2 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.48	Analog output 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT	

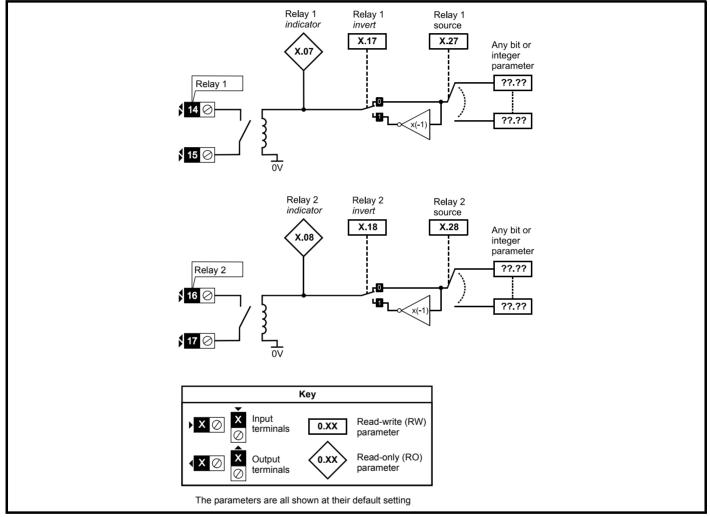
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

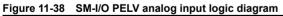


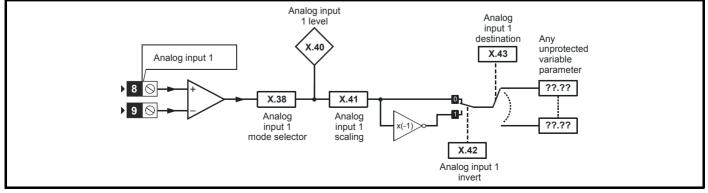

Safety Product Mechanical Electrical Getting Basic Runningthe Optimization SMARTCARD Onboard Adversion Information Installation Installation Started parameters motor Optimization SMARTCARD Onboard PLC parameters	Diagnostics	UL Listing Information
---	-------------	---------------------------

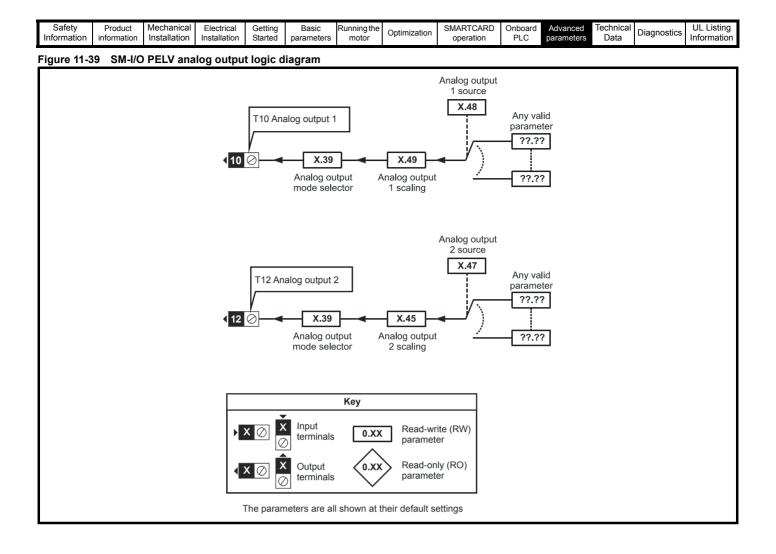

SM-I/O Timer & SM-I/O Lite parameters

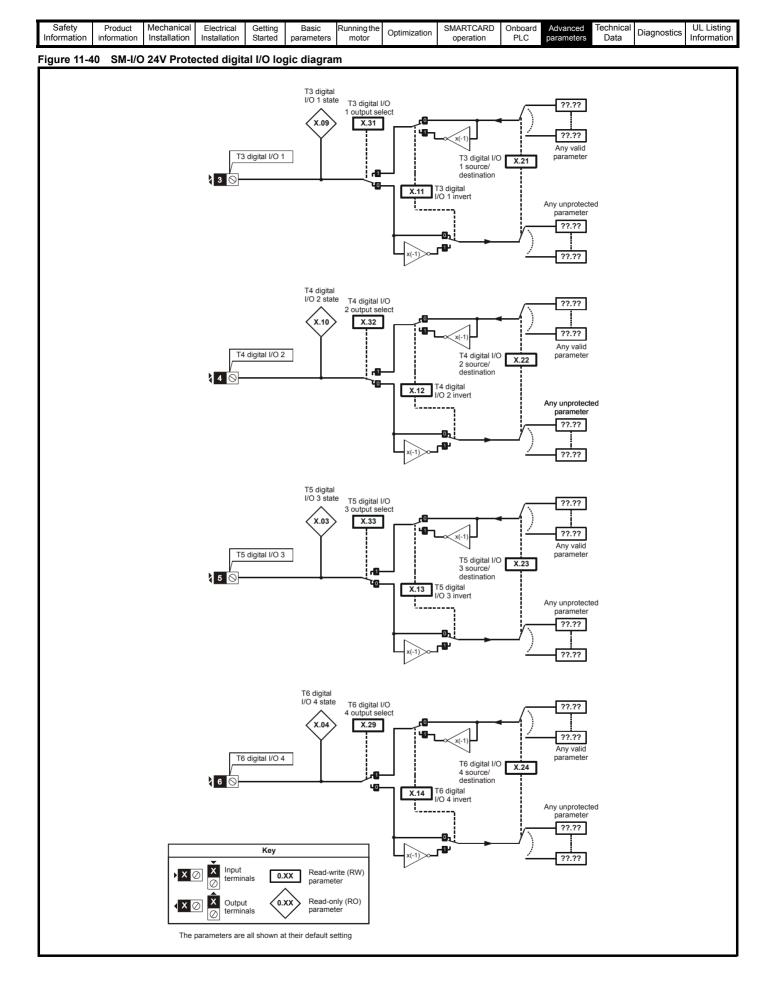
	Demonster					т.,				SM	I-I/O
	Parameter	Range(ᡎ)	Default(⇔)			Ту	ре			Lite	Timer
x.01	Solutions Module ID	0 to 599	SM-I/O Timer: 203 SM-I/O Lite: 207	RO	Uni			PT	US	~	~
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC			~	~
x.03	Current loop loss indicator	OFF (0) or On (1)		RO	Bit		NC	PT		~	~
x.04	T5 digital input 1 state	OFF (0) or On (1)		RO	Bit		NC	PT		~	~
x.05	T6 digital input 2 state	OFF (0) or On (1)		RO	Bit		NC	PT		~	✓
x.06	T7 digital input 3 state	OFF (0) or On (1)		RO	Bit		NC	PT		~	✓
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT		~	✓
x.14	T5 digital input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	~	✓
x.15	T6 digital input 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	~	✓
x.16	T7 digital input 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	~	✓
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	✓	✓
x.19	Real time clock daylight saving mode	OFF (0) or On (1)	OFF (0)	RW	Bit				US		✓
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	PT		~	✓
x.24	T5 digital input 1 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US	✓	✓
x.25	T6 digital input 2 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US	~	✓
x.26	T7 digital input 3 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US	✓	✓
x.27	Relay 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US	✓	✓
x.30	Real time clock update mode	0 to 2	0	RW	Uni		NC				✓
x.34	Real time clock time: minutes.seconds	0.00 to 59.59		RW	Uni		NC	PT			✓
x.35	Real time clock time: days.hours	1.00 to 7.23		RW	Uni		NC	PT			✓
x.36	Real time clock time: months.days	0.00 to 12.31		RW	Uni		NC	PT			✓
x.37	Real time clock time: years	2000 to 2099		RW	Uni		NC	PT			✓
x.38	Analog input 1 mode	0-20 (0), 20-0 (1), 4-20.tr (2), 20-4.tr (3), 4-20 (4), 20-4 (5), VOLt(6)	0-20 (0)	RW	Txt				US	~	~
x.39	Analog output mode	0-20 (0), 20-0 (1), 4-20 (2), 20-4 (3), VOLt (4)	0-20 (0)	RW	Txt				US	~	~
x.40	Analog input 1	±100.0%		RO	Bi		NC	PT		~	~
x.41	Analog input 1 scaling	0 to 4.000	1.000	RW	Uni				US	✓	~
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US	√	~
x.43	Analog input 1 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	-	DE		PT	US	~	~
x.48	Analog output 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US	~	✓
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US	~	✓
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT		~	✓
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT		~	✓

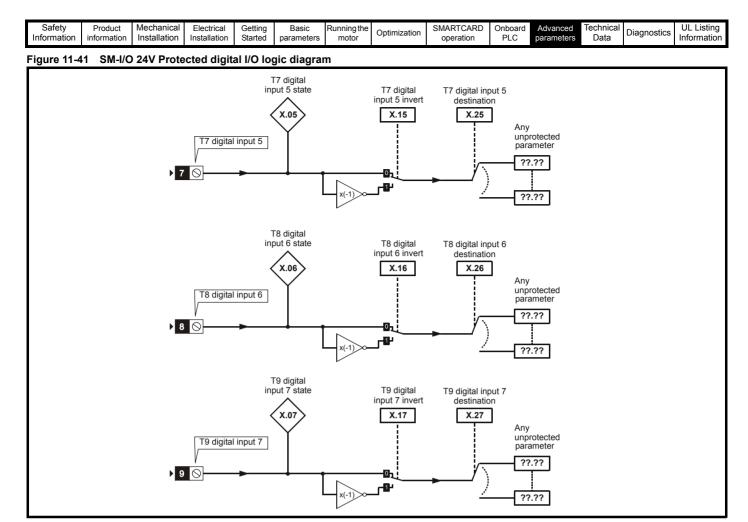

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save



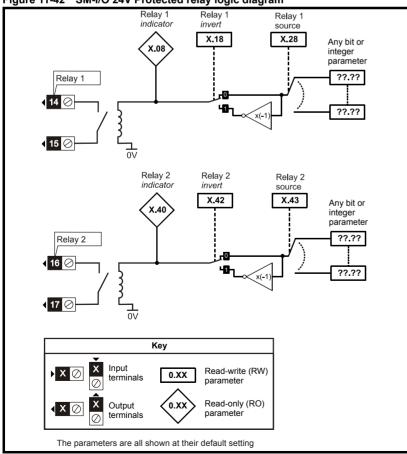




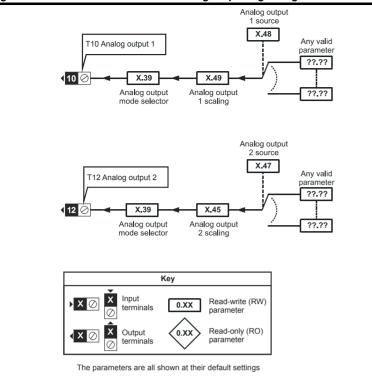



Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

SM-I/O PELV parameters


	Parameter	Range(‡)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 599	204	RO	Uni			ΡT	US
x.02	Solutions Module software version	0.00 to 99.99		RO	Uni		NC	PT	
x.03	T5 digital I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T6 digital I/O 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.07	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.09	T3 digital I/O 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.10	T4 digital I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T3 digital I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T4 digital I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T5 digital I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T6 digital I/O 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	Disable PELV User power supply absent trip	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.19	Freeze flag	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	PT	
x.21	T3 digital I/O 1 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.22	T4 digital I/O 2 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.23	T5 digital I/O 3 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.24	T6 digital I/O 4 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.27	Relay 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.28	Relay 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.29	T6 digital I/O 4 output select	OFF (0) or On (1)	On (1)	RW	Bit				US
x.31	T3 digital I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	T4 digital I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.33	T5 digital I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.38	Analog input 1 mode	0-20 (0), 20-0 (1), 4-20.tr (2), 20-4.tr (3), 4-20 (4), 20-4 (5)	0-20 (0)	RW	Txt				US
x.39	Analog output mode	0-20 (0), 20-0 (1), 4-20 (2), 20-4 (3)	0-20 (0)	RW	Txt				US
x.40	Analog input 1 level	0.0 to 100.0%		RO	Bi		NC	PT	
x.41	Analog input 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.42	Analog input 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.43	Analog input 1 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US
x.45	Analog output 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.47	Analog output 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.48	Analog output 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save



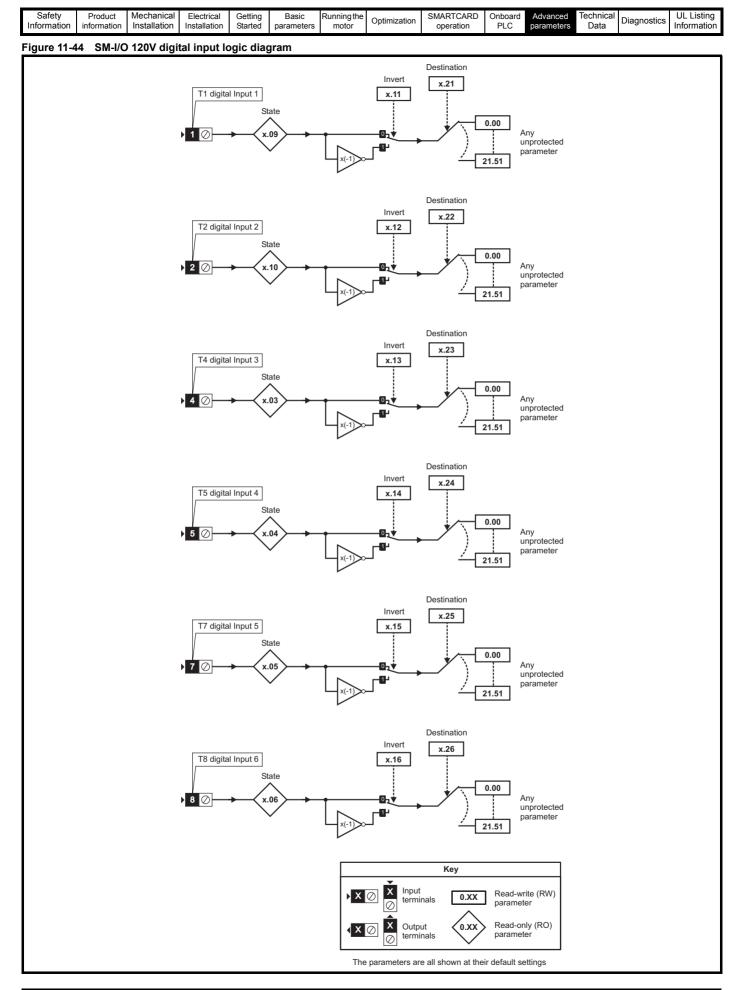
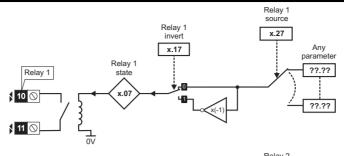
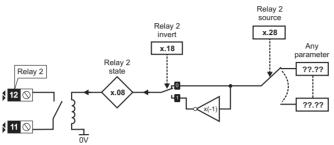
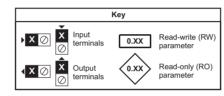

Safety Product Mechanical Electrical Getting Basic Running the motor Optimization Information information Installation Installation Started parameters motor Optimization	SMARTCARD operation Onboard PLC Advanced parameters Technical Data Diagnostics UL Listing Information
--	---

Figure 11-43 SM-I/O 24V Protected analog output logic diagram

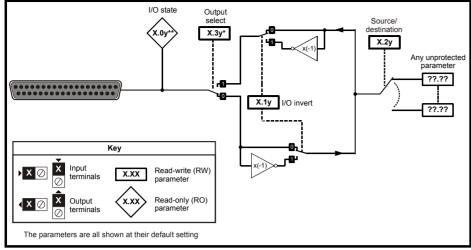

SM-I/O 24V Protected parameters


	Parameter	Range(≎)	Default(⇔)			Ty	pe		
x.01	Solutions Module ID	0 to 599	205	RO	Uni			ΡI	US
x.02	Solutions Module Main Software Version	0.00 to 99.99		RO	Uni	1	NC	PT	
x.03	T5 digital I/O 3 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.04	T6 digital I/O 4 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.05	T7 digital input 5 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.06	T8 digital input 6 state	OFF (0) or On (1)		RO	Bit		NC	PT	1
x.07	T9 digital input 7 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.08	Relay 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	1
x.09	T3 digital I/O 1 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.10	T4 digital I/O 2 state	OFF (0) or On (1)		RO	Bit		NC	PT	
x.11	T3 digital I/O 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.12	T4 digital I/O 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.13	T5 digital I/O 3 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.14	T6 digital I/O 4 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.15	T7 digital input 5 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.16	T8 digital input 6 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.17	T9 digital input 7 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.18	Relay 1 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.20	Digital I/O read word	0 to 255		RO	Uni		NC	PT	
x.21	T3 digital I/O 1 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.22	T4 digital I/O 2 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.23	T5 digital I/O 3 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.24	T6 digital I/O 4 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.25	T7 digital input 5 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.26	T8 digital input 6 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.27	T9 digital input 7 destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE			US
x.28	Relay 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni				US
x.29	T6 digital I/O 4 output select	OFF (0) or On (1)	On (1)	RW	Bit				US
x.31	T3 digital I/O 1 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.32	T4 digital I/O 2 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.33	T5 digital I/O 3 output select	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.39	Analog output mode	0-20, 20-0, 4-20, 20-4	0-20	RW	Uni				US
x.40	Relay 2 state	0.0 or 100.0 %		RO	Bit		NC	PT	
x.42	Relay 2 invert	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.43	Relay 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni				US
x.45	Analog output 2 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.47	Analog output 2 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni				US
x.48	Analog output 1 source	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni				US
x.49	Analog output 1 scaling	0.000 to 4.000	1.000	RW	Uni				US
x.50	Solutions Module error status	0 to 255		RO	Uni		NC	PT	
x.51	Solutions Module software sub-version	0 to 99		RO	Uni	1	NC	PT	1



Safety Produ Information information		Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	--	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Figure 11-45 SM-I/O 120V relay diagram


The parameters are all shown at their default settings

SM-I/O 120V parameters

	P	arame	eter			Rang	e(\$)		Defa	ult(⇔)				Ту	pe		
x.01	Solutions	Modul	e ID			0 to :	599		2	06		RO	Uni			PT	US
x.02	Solutions	Modul	e software vers	sion		0.00 to	99.99					RO	Uni		NC	PT	1
x.03	T4 digital	input 3	state		0	OFF (0) or On (1)							Bit		NC	PT	
x.04	4 T5 digital input 4 state			OFF (0) or On (1)					RO	Bit		NC	PT				
x.05					0	FF (0) c	or On (1)					RO	Bit		NC	PT	
x.06	T8 digital	input 6	i state		0	FF (0) c	or On (1)					RO	Bit		NC	PT	1
x.07	Relay 1 s	tate			0	FF (0) c	or On (1)					RO	Bit		NC	PT	1
x.08	Relay 2 s	tate			0	OFF (0) or On (1)		RO	Bit		NC						
x.09	T1 digital	input 1	state		0	FF (0) c	or On (1)					RO	Bit		NC		
x.10	v					OFF (0) or On (1) OFF (0) or On (1) OFF (0)						RO	Bit		NC	PT	
x.11	U				0	FF (0) c	or On (1)			F (0)		RW	Bit				US
x.12	U					()	or On (1)			F (0)		RW	Bit				US
x.13	U U					. ,	or On (1)			F (0)		RW	Bit				US
x.14	U						or On (1)			F (0)		RW	Bit				US
x.15	T7 digital	input 5	invert		0	FF (0) c	or On (1)		OF	F (0)		RW	Bit				US
x.16	U		invert				or On (1)			F (0)		RW RW	Bit				US
x.17	,				OFF (0) or On (1)				OFF (0)				Bit Bit				US
x.18	,				OFF (0) or On (1)				OFF (0)								US
x.20	0				0 to 255							R0 RW	Uni		NC		
x.21	•		destination				Pr 21.51		Pr 0.00				-	DE			
x.22	0		destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW	Uni				US
x.23	0		destination		Pr	0.00 to	Pr 21.51		Pr	0.00		RW	Uni				US
x.24	U		destination				Pr 21.51			0.00		RW	-	DE			US
x.25	•		destination				Pr 21.51			0.00		RW	Uni				US
x.26	0		destination				Pr 21.51			0.00		RW	Uni				US
x.27	,						Pr 21.51			0.00		RW	Uni				US
x.28	,				Pr		Pr 21.51		Pr	0.00		RW					US
x.50			e error status*			0 to 2						RO	Uni		NC		
x.51	Solutions	Module	software sub-v	resion		0 to	99					RO	Uni		NC	PT	
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string						_
	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save		PS	Powe	r dou		

Safety Product Mechanical Electrical Getting Basic Runningthe Optimization Information Installation Installation Istallation Started parameters Motor Optimization	SMARTCARD Onboard Advanced parameters Data Diagnostics UL Listing Information
--	---

Figure 11-6 SM-I/O 32 logic diagram

SM-I/O 32 parameters

	Parameter	Range(\$)	Default(⇔)		Туре						
x.01	Solutions Module ID code	0 to 599	208	RO	Uni			PT	US		
x.02	Solutions Module main software version	0.00 to 99.99	99.00	RO	Uni		NC	PT			
x.03	Digital I/O 3 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT			
x.04	Digital I/O 4 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT			
x.05	Digital I/O 5 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT			
x.06	Digital I/O 6 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT			
x.07	Digital I/O 7 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT			
x.08	Digital I/O 8 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT			
x.09	Digital I/O 1 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT			
x.10	Digital I/O 2 state	OFF(0) or On(1)	OFF (0)	RO	Bit		NC	PT			
x.11	Digital I/O 1 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.12	Digital I/O 2 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.13	Digital I/O 3 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.14	Digital I/O 4 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.15	Digital I/O 5 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.16	Digital I/O 6 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.17	Digital I/O 7 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.18	Digital I/O 8 invert	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.20	Digital I/O read word	0 to 255	0	RO	Uni		NC	PT			
x.21	Digital I/O 1 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.22	Digital I/O 2 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.23	Digital I/O 3 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.24	Digital I/O 4 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.25	Digital I/O 5 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.26	Digital I/O 6 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.27	Digital I/O 7 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.28	Digital I/O 8 source/destination	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.29	Digital I/O 4 output select	OFF(0) or On(1)	On(1)	RW	Bit			PT	US		
x.31	Digital I/O 1 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.32	Digital I/O 2 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.33	Digital I/O 3 output select	OFF(0) or On(1)	OFF (0)	RW	Bit				US		
x.43	First update method direction register	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.47	Fast update method read register	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni	DE		PT	US		
x.48	Fast update method write register	Pr 0.00 to Pr 21.51	Pr 0.00	RW	Uni			PT	US		
x.50	Solutions Module error status*	0 to 255		RO	Uni		NC	PT			
x.51	Solutions Module software sub-version	0 to 99		RO	Uni		NC	PT	<u> </u>		

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Product Mechanical Electrical Getting Basic Running the motor Optimization SMART	
--	--

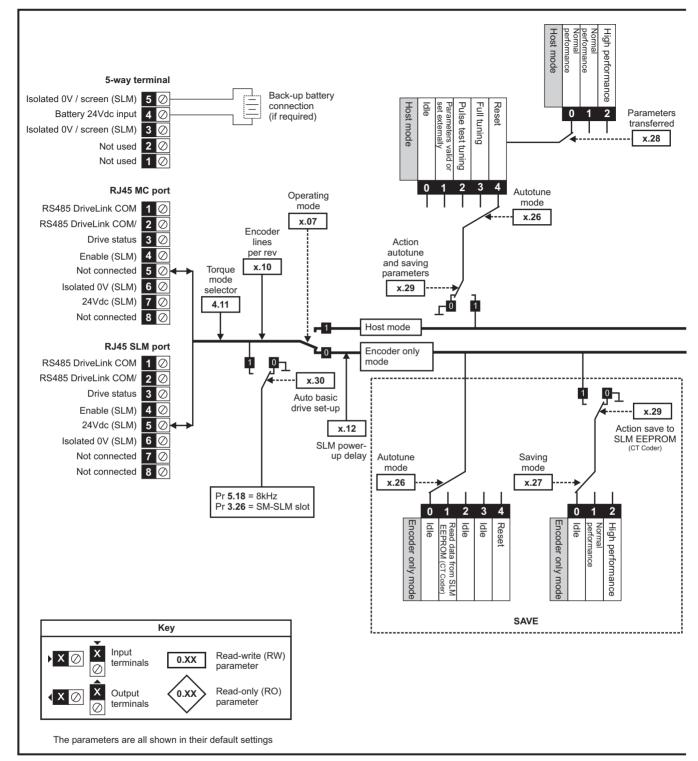
Applications module parameters

x.01 x.02 x.03 x.04 x.05 x.06 x.07 x.08 x.09	Solutions Module ID Solutions Module software version DPL program status Available system resource RS485 address RS485 mode	0 to 599 0.00 to 99.99 None (0), Stop (1), Run (2						RO RO	Uni Uni	NC		US
x.03 x.04 x.05 x.06 x.07 x.08	DPL program status Available system resource RS485 address	None (0), Stop (1), Run (2						RO	l Ini	NIC		
x.04 x.05 x.06 x.07 x.08	Available system resource RS485 address										PT	
x.05 x.06 x.07 x.08	RS485 address), Trip (3)					RO	Txt	NC	PT	
x.06 x.07 x.08		0 to 100						RO	Uni	NC	PT	
x.07 x.08	RS485 mode	0 to 255				1		RW	Uni			US
x.08		0 to 255			1				Uni			US
	RS485 baud rate	300 (0), 600 (1), 1200 (2), 2400 9600 (5), 19200 (6), 38400 (7 115200 (9) baud	'), 57600 (8),		480	0 (4)		RW	Txt			US
x.09	RS485 Turnaround delay	0 to 255 ms		2					Uni			US
	RS485 Tx enable delay	0 to 1 ms				0		RW	Uni			US
x.10	DPL Print Routing	SYPT: OFF (0), RS485:	On (1)		SYPT:	OFF (0)	RW	Bit			US
x.11	Clock task scheduling (ms)	0 to 200			1	0		RW	Uni			US
x.12	POS task scheduling rate	dISAbLEd (0), 0.25 ms (1), 0.5 m 2 ms (4), 4 ms (5), 8 m			dISAb	LEd (0)		RW	Txt			US
x.13	Enable autorun	OFF (0) or On (1))			(1)		RW	Bit			US
x.14	Global run time trip enable	OFF (0) or On (1)			OF	F (0)		RW	Bit			US
x.15	Disable reset on trip cleared	OFF (0) or On (1))		OF	= (0)		RW	Bit			US
x.16	Encoder data update rate	0 to 3						RW	Uni			US
x.17	Enable parameter over range trips	OFF (0) or On (1)				F (0)		RW	Bit			US
x.18	Watchdog enable	OFF (0) or On (1))		OF	F (0)		RW	Bit			US
x.19	Save request	OFF (0) or On (1))			F (0)		RW	Bit	NC		
x.20	Enable power down save	OFF (0) or On (1))		OF	F (0)		RW	Bit			US
x.21	Enable menu 20 save and restore	OFF (0) or On (1)			OF	= (0)		RW	Bit			US
x.22	CTNet Token Ring ID	0 to 255				0		RW	Uni			US
x.23	CTNet node address	0 to 255			0							US
x.24	CTNet baud rate	5.000 (0), 2.500 (1), 1.250 (2	2), 0.625 (3)		2.50	0 (1)		RW	Txt			US
x.25	CTNet sync setup	0,000 to 9,999			0,0	000		RW	Uni			US
x.26	CTNet easy mode - first cyclic parameter destination node	0 to 25,503			0		RW	Uni			US	
x.27	CTNet easy mode - first cyclic source parameter	0 to 9,999			0		RW	Uni			US	
x.28	CTNet easy mode - second cyclic parameter destination node	0 to 25,503				0		RW	Uni			US
x.29	CTNet easy mode - second cyclic source parameter	0 to 9,999		0			RW	Uni			US	
x.30	CTNet easy mode - third cyclic parameter destination node	0 to 25,503		0			RW	Uni			US	
x.31	CTNet easy mode - third cyclic source parameter	0 to 9,999	0 to 9,999			0			Uni			US
x.32	CTNet easy mode set-up - Transfer slot 1 destination parameter	0 to 9,999	0			RW	Uni			US		
x.33	CTNet easy mode set-up - Transfer slot 2 destination parameter	0 to 9,999	0			RW	Uni			US		
x.34	CTNet easy mode set-up - Transfer slot 3 destination parameter	0 to 9,999	(0) Eugento (0)		0			RW	Uni			US
x.35 x.36	CTNet sync event task ID CTNet diagnostic parameter	Disabled (0), Event (1), Event (1) Event3 (4) -3 to +32,767	(∠), EVEIIIZ (3),		Disab	led (0)		RW RO	Txt	NC	דם	US
	Reject download if drive enabled	OFF (0) or On (1)	<u>\</u>			= (0)		RW		NC	ГІ	US
x.37 x.38	APC run-time trip	OFF (0) or On (1) OFF (0) or On (1)				- (0) - (0)		RW				US
	APC run-time trip	() ()	1			. ,		_		NC		08
x.39	,	0 to 3				0		RO		NC		_
x.41	Indexer control	0 to 255		 		0			Uni	NC		
x.42	Pass freeze through drive	OFF (0) or On (1)		 		F (0)		RW				US
x.43	Freeze invert	OFF (0) or On (1)				= (0)		RW				US
x.44	Task priority level User set-up parameter 1	0 to 255	0				RW		NO		US	
x.45	11	0 to 65535	7					RO		NC		_
x.46	User set-up parameter 2	-32,768 to +32,76	1					Uni	NC		_	
x.47	User set-up parameter 3	0 to 255	7				RO		NC	DT	┞	
x.48	DPL line number in error	0 to 2,147,483,64		0			RO		NC		<u> </u>	
x.49	User program ID	-32,768 to +32,76	1	0			RO		NC		L	
x.50	Solutions Module error status*	0 to 255						RO		NC		┞
x.51	Solutions Module software sub-version	0 to 99						RO	Uni	NC	۲ſ	
			or	D:+	Dit noro	T	Tout at-in-					_
	Read / Write RO Read only Un iltered DE Destination NO				Bit parameter Protected	Txt US	Text string User save	P		er dov		

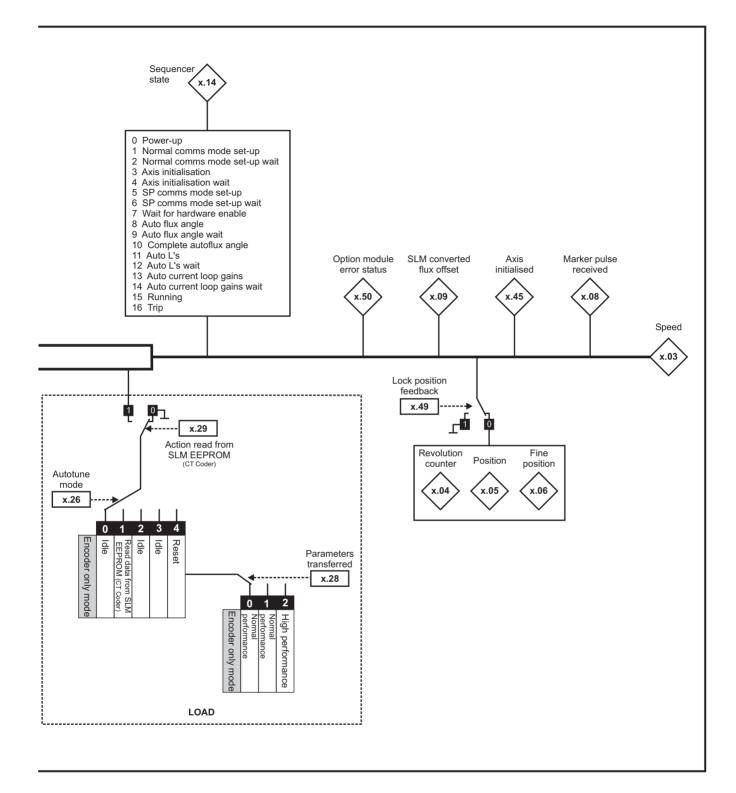
*See trip SLX.Er, Automation (Applications) module category on page 286.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

11.15.4 Fieldbus module category


Fieldbus module parameters

For information regarding fieldbus module parameters, refer to the appropriate Solutions Module User Guide.


Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

11.15.5 SLM module category

Figure 11-46 SM-SLM logic diagram

	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Safety Product Mechanical Electrical Getting Basic Running the motor Optimization	n SMARTCARD Onboard Advanced parameters Data Diagnostics UL Listing Information
--	---

SM-SLM parameters

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
x.01	Solutions Module ID	0 to 499		RO	Uni			PT	US
x.02	Solutions Module software version	0.0 to 99.99		RO	Uni		NC	PT	
x.03	Speed	±40,000.0 rpm		RO	Bi	FI	NC	PT	
x.04	Revolution counter	0 to 65,535 revolutions		RO	Uni	FI	NC	PT	
x.05	Position	0 to 65,535 (1/2 ¹⁶ ths of a revolution)		RO	Uni	FI	NC	PT	
x.06	Fine position	0 to 65,535 (1/2 ³² nds of a revolution)		RO	Uni	FI	NC	PT	
x.07	Operating mode	HoSt (0), Enc.Only (1)	HoSt (0)	RW	Txt				US
x.08	Marker pulse received indicator	OFF (0) or On (1)	OFF (0)	RO	Bit		NC		
x.09	SLM converted flux offset	0 to 65,535	0	RO	Uni				
x.10	Encoder lines per revolution	0 to 50,000	1024	RW	Uni				US
x.11	SLM software version	0.000 to 9.999	0.000	RO	Uni		NC	PT	
x.12	SLM power-up delay	0.000 (0), 0.250 (1), 0.500 (2), 0.750 (3), 1.000 (4), 1.250 (5), 1.500 (6) s	0.250 (1)	RW	Txt				US
x.13	Not used*								
x.14	Sequencer status	0 to 16		RO	Uni		NC	PT	
x.15	Not used*								
x.16	Not used*								
x.17	Not used*								
x.18	Not used*								
x.19	Feedback filter	0 (0), 1 (1), 2 (2), 4 (3), 8 (4), 16 (5) ms	0 (0)	RW	Txt				US
x.20	Not used*								
x.21	Not used*								
x.22	Not used*								
x.23	Not used*								
x.24	Not used*			D 14/					
x.26	Autotune mode	0 to 4	0	RW	Uni				US
x.27	Saving mode	0 to 2	0	RW	Uni				US
x.28	Parameters transferred	0 to 2	0	RW	Uni				US
x.29	Action the tuning and saving parameters	OFF (0) or On (1)	OFF (0)	RW	Bit				US
x.30	Automatic basic drive set-up request	0 to 1	0	RW	Uni				US
x.32	Not used*								[
x.33	Not used*								
x.34	Not used*								[
x.35	Not used*								
x.36	Not used*								
x.37	Not used*								
x.38	Not used*								
x.39	Not used*								
x.40	Not used*								
x.41	Not used*								
x.42	Not used*								
x.43	Not used*								
x.44	Not used*				L		L		L
x.45	Axis initialised	OFF (0) or On (1)		RO	Bit		L	PT	L
x.46	Not used*								
x.47	Not used*								
x.48	Not used*								
x.49	Lock position feedback	OFF (0) or On (1)	OFF (0)	RW	Bit			PT	
x.50	Solutions Module error status**	0 to 255		RO	Uni	<u> </u>	NC	PT	<u> </u>
x.51	Solutions Module software sub- version	0 to 99		RO	Uni		NC	PT	

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

* Some of the parameters which are not used will be introduced in scheduled product enhancement.

**See trip SLX.Er, SLM module category on page 288.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					1				-				

11.16 Menu 18: Application menu 1

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
18.01	Application menu 1 power-down saved integer	-32,768 to +32,767	0	RW	Bi		NC	F	PS
18.02 to 18.10	Application menu 1 read-only integer	-32,768 to +32,767	0	RO	Bi		NC		
18.11 to 18.30	Application menu 1 read-write integer	-32,768 to +32,767	0	RW	Bi			ι	JS
18.31 to 18.50	Application menu 1 read-write bit	OFF (0) or On (1)	0	RW	Bit			ι	JS

11.17 Menu 19: Application menu 2

	Parameter	Range(≎)	Default(⇔)			Ту	ре		
19.01	Application menu 2 power-down saved integer	-32,768 to +32,767	0	RW	Bi		NC	ſ	PS
19.02 to 19.10	Application menu 2 read-only integer	-32,768 to +32,767	0	RO	Bi		NC		
19.11 to 19.30	Application menu 2 read-write integer	-32,768 to +32,767	0	RW	Bi			ι	US
19.31 to 19.50	Application menu 2 read-write bit	OFF (0) or On (1)	0	RW	Bit			ι	US

11.18 Menu 20: Application menu 3

Parameter	Range(獔)	Default(⇔)			Тур	e	
20.01 to 20.20 Application menu 3 read-write integer	-32,768 to +32,767	0	RW	Bi		NC	
20.21 toApplication menu 3 read-write long20.40integer	-2^{31} to 2^{31} -1	0	RW	Bi		NC	

With software V01.07.00 and later, all menu 20 parameters are transferred to the SMARTCARD when a 4yyy transfer is performed. See section 9.2.1 *Writing to the SMARTCARD* on page 144 for more information.

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

11.19 Menu 21: Second motor parameters

	Parameter		R	ange(‡)		Default(⇔)				т	pe		
	Falameter		OL	CL	OL	VT	sv			IJ	he		
21.01	Maximum reference clamp	{0.02 }*	0 to 3,000.0 Hz	SPEED_LIMIT_MAX rpm	EUR> 50.0 USA> 60.0	EUR> 1,500.0 USA> 1,800.0	3,000.0	RW	Uni				US
21.02	Minimum reference clamp	{0.01 }*	±3,000.0 Hz	±SPEED_LIMIT_MAX rpm		0.0		RW	Bi			PT	US
21.03	Reference selector	{0.05 }*		A2.Pr (2), Pr (3), PAd (4), Prc (5)		A1.A2 (0)	-	RW	Txt				US
21.04	Acceleration rate	{0.03}*	0.0 to 3,200.0 s/100Hz	0.000 to 3,200.000 s/1000rpm	5.0	2.000	0.200	RW	Uni				US
21.05	Deceleration rate	{0.04 }*	0.0 to 3200.0 s/100Hz	0.000 to 3,200.000 s/1000rpm	10.0	2.000	0.200	RW	Uni				US
21.06	Rated frequency	{0.47 }*	0 to 3000.0 Hz	VT> 0 to 1250.0Hz		R> 50 A> 60		RW	Uni				US
21.07	Rated current	{0.46 }*	0 to RATED	_CURRENT_MAX A	Drive r	11.32)	RW	Uni		RA		US	
21.08	Rated load rpm	{0.45 }*	0 to 180,000 rpm	0.00 to 40,000.00 rpm	EUR> 1,500 EUR> 1,450.00 3,000.00 USA> 1,800 USA> 1,770.00 3000.00 200V rating drive: 230V 230V				Uni				US
21.09	Rated voltage	{0.44 }*	0 to AC_VO	LTAGE_SET_MAX V	400V rating d 575	V rating drive: 23 rive: EUR> 400V V rating drive: 57 V rating drive: 69	, USA> 460V ′5V	RW	Uni		RA		US
21.10			0.000 to 1.000	VT> 0.000 to 1.000	0.85			RW	Uni		RA		US
21.11	Number of motor poles					Auto (0) 6 POLE (3)			Txt				US
21.12	Stator resistance		0.000 to	65.000 x 10 m Ω	0.0			RW	Uni		RA		US
21.13	Voltage offset		0.0 to 25.0 V		0.0			RW	Uni		RA		US
21.14	Transient inductance ($\sigma L_{s)}$		0.000	to 500.000mH		0.000		RW	Uni		RA		US
21.15	Motor 2 active		OFF	(0) or On (1)				RO	Bit		NC	PT	
21.16	Thermal time constant	{0.45 }*	0.0	0 to 3000.0	8	39.0	20.0	RW	Uni				US
21.17	Speed controller Kp gain	{0.07 }*		0.000 to 6.5535 rad s ⁻¹		0.0300	0.0100	RW	Uni				US
21.18	Speed controller Ki gain	{0.08}*		0.00 to 655.35 s/rad s ⁻¹		0.10	1.00	RW	Uni				US
21.19	Speed controller Kd gain	{0.09 }*		0.00000 to 0.65535 s ⁻¹ /rad s ⁻¹		0.000	00	RW	Uni				US
21.20	Encoder phase angle	{0.43 }*		0.0 to 359.9 ° electrical			0.0	RW	Uni				US
21.21	Speed feedback selector			drv (0), SLot1 (1), SLot2 (2), SLot3 (3)		drv (0)	RW	Txt				US
21.22	Current controller Kp gain	{0.38 }*	0	to 30,000	20	200V: 75, 40 575V: 180, 6		RW	Uni				US
21.23	Current controller Ki gain	{0.39}*	0	to 30,000	40	200V: 1,000, 4 575V: 2,400, 6		RW	Uni				US
21.24	Stator inductance (L _s)			VT> 0.00 to 5,000.00 mH		0.00		RW	Uni		RA		US
21.25	Motor saturation breakpoint	1		VT> 0 to 100% of rated flux		50		RW	Uni	1			US
21.26	Motor saturation breakpoint	2	VT> 0 to 100% of rated flux			75		RW	Uni				US
21.27	Motoring current limit		0 to MOTOR2_C	138.1	165.7	150.0	RW	Uni	1	RA		US	
21.28	Regen current limit		0 to MOTOR2_C	URRENT_LIMIT_MAX %	138.1	165.7	150.0	RW	Uni		RA		US
21.29	Symmetrical current limit	{0.06}*	0 to MOTOR2_C	URRENT_LIMIT_MAX %			150.0	RW	Uni	Ì	RA		US
21.30	Motor volts per 1,000 rpm, K	e		SV> 0 to 10,000 V			98	RW	Uni				US
21.31	Motor pole pitch		0.00	to 655.35 mm		0.00	ı	RW	Uni				US

RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit	Bit parameter	Txt	Text string		
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	PS	Power down save

* The menu 0 references are only valid when the second motor map parameters have been made active by setting Pr **11.45** to 1. (The second motor map only becomes effective when the output stage of the drive is not enabled, i.e. inh, rdY, or trip states.)

When the second motor map parameters are active, the symbol 'Mot2' will appear in the lower left hand corner of the LCD display or the decimal point that is second from the right on the first row of the LED display is lit.

Encoder phase angle (servo mode only)

With drive software version V01.08.00 onwards, the encoder phase angles in Pr 3.25 and Pr 21.20 are copied to the SMARTCARD when using any of the SMARTCARD transfer methods.

With drive software version V01.05.00 to V01.07.01, the encoder phase angles in Pr **3.25** and Pr **21.20** are only copied to the SMARTCARD when using either Pr **0.30** set to Prog (2) or Pr **xx.00** set to 3yyy.

This is useful when the SMARTCARD is used to back-up the parameter set of a drive but caution should be used if the SMARTCARD is used to transfer parameter sets between drives.

Unless the encoder phase angle of the servo motor connected to the destination drive is known to be the same as the servo motor connected to the source drive, an autotune should be performed or the encoder phase angle should be entered manually into Pr **3.25** (or Pr **21.20**). If the encoder phase angle is incorrect the drive may lose control of the motor resulting in an O.SPd or Enc10 trip when the drive is enabled. With drive software version V01.04.00 and earlier, or when using software version V01.05.00 to V01.07.01 and Pr **xx.00** set to 4yyy is used, then the encoder phase angles in Pr **3.25** and Pr **21.20** are not copied to the SMARTCARD. Therefore, Pr **3.25** and Pr **21.20** in the destination

would not be changed during a transfer of this data block from the SMARTCARD.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

11.20 Menu 22: Additional Menu 0 set-up

	Dar	amete	\r		В	onaol	¢١		Defau	ult(⇔)				Туре		
	Fai	ameu	71		ĸ	ange(₩)		OL V	/т	sv			Type		
22.01	Parameter 0	.31 set	-up		Pr 1. (10 to Pi	21.51		Pr 1	1.33		RW	Un	i	PT	US
22.02	2 Parameter 0	.32 set	-up		Pr 1. (10 to Pi	21.51		Pr 1	1.32		RW	Un	i	PT	US
22.03	B Parameter D	.33 set	-up		Pr 1. (10 to Pi	⁻ 21.51	Pi	6.09 Pr	5.16	Pr 0.00	RW	Un	i	PT	US
22.04	Parameter 0	.34 set	-up		Pr 1. (10 to Pi	⁻ 21.51		Pr 1	1.30		RW	Un	i	PT	US
22.05	5 Parameter 0	.35 set	-up		Pr 1. (0 to Pi	⁻ 21.51		Pr 1	1.24		RW	Un	i	PT	US
22.06	B Parameter D	.36 set	-up		Pr 1.(10 to Pi	21.51		Pr 1	1.25		RW	Un	i	PT	US
22.07	7 Parameter 0	.37 set	-up		Pr 1.(10 to Pi	21.51	Pr 11.23				RW	Un	i	PT	US
22.10	Parameter 0	.40 set	-up		Pr 1. (0 to Pi	⁻ 21.51	Pr 5.12				RW	Un	i	PT	US
22.11	Parameter 0	.41 set	-up		Pr 1.(10 to Pi	21.51	Pr 5.18				RW	Un	i	PT	US
22.18	B Parameter D	.48 set	-up		Pr 1. (0 to Pi	21.51	Pr 11.31				RW	Un	i	PT	US
22.20	Parameter 0	.50 set	-up		Pr 1. (0 to Pi	⁻ 21.51		Pr 1	1.29		RW	Un	i	PT	US
22.21	Parameter 0	.51 set	-up		Pr 1.(10 to Pi	21.51		Pr 1	0.37		RW	Un	i	PT	US
22.22	2 Parameter 0	.52 set	-up		Pr 1. (0 to Pi	21.51		Pr (0.00		RW	Un	i	PT	US
22.23	B Parameter D	.53 set	-up		Pr 1. (0 to Pi	21.51		Pr (0.00		RW	Un	i	PT	US
22.24	Parameter 0	.54 set	-up		Pr 1. (0 to Pi	21.51		Pr (0.00		RW	Un	i	PT	US
22.25	5 Parameter 0	.55 set	-up		Pr 1. (10 to Pr	[.] 21.51		Pr (0.00		RW	Un	i	PT	US
22.26	B Parameter D	.56 set	-up		Pr 1. (0 to Pi	⁻ 21.51		Pr (0.00		RW	Un	i	PT	US
22.27	7 Parameter 0	.57 set	-up		Pr 1. (10 to Pr	[.] 21.51		Pr (0.00		RW	Un	i	PT	US
22.28	B Parameter D	.58 set	-up		Pr 1. (0 to Pi	21.51		Pr (0.00		RW	Un	i	PT	US
22.29	Parameter 0	.59 set	-up		Pr 1. (10 to Pi	21.51		Pr (0.00		RW	Un	i	PT	US
RW	Read / Write	RO	Read only	Uni	Unipolar	Bi	Bi-polar	Bit Bit parameter Txt Text string			Text string					
FI	Filtered	DE	Destination	NC	Not copied	RA	Rating dependent	PT	Protected	US	User save	E F	PS	Power	down s	save

Safety Product Mechanical Electrical Getting Basic Running the parameters Optimization	n SMARTCARD Onboard Advanced parameters Data Diagnostics UL Listing Information
---	---

11.21 Advanced features

This section gives information on some of the advanced functions of the drive. For additional information see the *Advanced User Guide*.

Reference modes	Pr 1.14, Pr 1.15 and Pr 8.39
Braking modes	Pr 2.04 and Pr 2.08
S ramps	Pr 2.06 and Pr 2.07
Torque modes	Pr 4.08 and Pr 4.11
Stop modes	Pr 6.01, Pr 6.06, Pr 6.07 and Pr 6.08
Main loss modes	Pr 6.03, Pr 6.48, Pr 4.13 and Pr 4.14
Start/stop logic modes	Pr 6.04 and Pr 6.40
Catch a spinning motor	Pr 6.09 and Pr 5.40
Position loop modes	Pr 13.10
Fast disable	Pr 6.29

11.21.1 Reference modes

	1.1	4	Refere	ence se	elector					
R۷	N	Txt					NC		US	
ţ	A1.		A1.Pr (, PAd (4			⇔		A1.A2	(0)	

	1.1	5	Preset	t refere	ence se	elec	tor				
R١	W	Uni						NC		US	
€			0 to 9	9		合			0		

	8.39 T28 and T29 auto-selection disable										
R١	Ν	Bit								US	
\hat{U}		OF	F (0) or	On (1)		⇔			OFF (0)	

If Pr **8.39** is set to OFF (0), then the setting of Pr **1.14** automatically changes the operation of digital inputs T28 and T29 by configuring the destination parameters Pr **8.25** and Pr **8.26**. To allow Pr **8.25** and Pr **8.26** to be changed manually by the user, the automatic set-up must be disabled by setting Pr **8.39** to 1.

If Pr **8.39** is 0 and Pr **1.14** is changed, then a drive reset is required before the function of terminal T28 or T29 will become active.

Pr 1.14	Pr 1.15	[Digital Input T28		Digital Input T29	Pr 1.49	Pr 1.50	Active Reference
Pr 1.14	Pr 1.15	State	Function	State	Function	Pr 1.49	Pr 1.50	Active Reference
	0 or 1	0	Local Remote			1	1	Analog input 1
	UOFI	1	Local Remote			2	1	Analog input 2
	2 to 8		No function	-	log forward**	1 or 2	2 to 8	Preset reference 2 to 8
A1.A2 (0)		0	Local Remote	te Jog forward** 1 1 1 1 2 1 1 or 2 2 to 8 1		1	Analog input 1	
	9 *	1	LUCAI REITIOLE	No function		2	1	Analog input 2
			No function			1 or 2	2 to 8	Preset reference 2 to 8
A1.Pr (1)		0		0			1	Analog input 1
	0	1	Preset select bit 0	0	Preset select bit 1		2	Preset reference 2
	0	0		1			3	Preset reference 3
1 Dr (1)		1		'		1	4	Preset reference 4
 (1)	(1) 1 2 to 8						1	Analog input 1
	2 to 8		No function		No function		2 to 8	Preset reference 2 to 8
-	9 *						1	Analog input 1
	9						2 to 8	Preset reference 2 to 8
		0		0			1	Analog input 2
	0	1	Preset select bit 0	0	Preset select bit 1		2	Preset reference 2
	0	0	T Teset select bit 0	1			3	Preset reference 3
A2.Pr (2)		1		1		2	4	Preset reference 4
AZ.FI (Z)	1					- 2	1	Analog input 2
	2 to 8		No function		No function		2 to 8	Preset reference 2 to 8
	9 *		No function				1	Analog input 2
	9						2 to 8	Preset reference 2 to 8
		0		0			1	Preset reference 1
	0 1 0 Preset select bit 0 Preset select bit 1		2	Preset reference 2				
Pr (3)	Ŭ	0		1		3	3	Preset reference 3
		1				Ŭ	4	Preset reference 4
	1 to 8		No function	No function No function			1 to 8	Preset reference 1 to 8
	9 *						1 to 8	Preset reference 1 to 8
PAd (4)			No function		No function	4		Keypad reference
Prc (5)			No function		No function	5		Precision reference

* Setting Pr **1.15** to 9 enables the Preset reference scan timer. With the scan timer enabled analog 1 and preset references 2 to 8 are selected automatically in turn. Pr **1.16** defines the time between each change.

** Jog forward can only be selected when the drive is in either the ready (rdy), inhibit (inh) or trip states.

Table 11-7 Active reference

Safety Product Information information		Electrical Getting stallation Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
---	--	---------------------------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Preset references

Preset references 1 to 8 are contained in Pr 1.21 to Pr 1.28.

Keypad reference

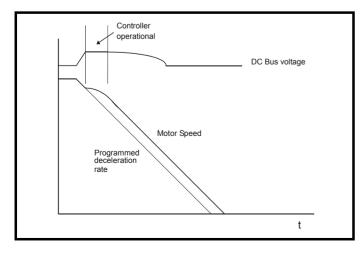
If Keypad reference is selected the drive sequencer is controlled directly by the keypad keys and the keypad reference parameter (Pr **1.17**) is selected. The sequencing bits, Pr **6.30** to Pr **6.34**, and Pr **6.37** have no effect and jog is disabled.

Precision reference

If Precision reference is selected the speed reference is given Pr **1.18** and Pr **1.19**.

11.21.2 Braking Modes

	2.0)4	Ramp	mode	select					
R۱	N	Txt							US	
OL	Û	F	FASt (0), Std (1), Std.hV (2)					Std (1	1)	
CL		F	FASt (0), Std (1)						-	

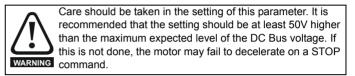

This parameter does not affect the acceleration ramp, as the ramp output always rises at the programmed acceleration rate subject to the current limits. It is possible in under some unusual circumstances in open-loop mode (i.e. highly inductive supply) for the motor to reach a low speed in standard ramp mode, but not completely stop. It is also possible if the drive attempts to stop the motor with an overhauling load in any mode that the motor will not stop when standard ramp mode or fast ramp mode is used. If the drive is in the deceleration state the rate of fall of the frequency or speed is monitored. If this does not fall for 10 seconds the drive forces the frequency or the speed reference to zero. This only applies when the drive is in the deceleration state and not when the reference is simply set to zero.

0: Fast ramp

Fast ramp is used where the deceleration follows the programmed deceleration rate subject to current limits.

1: Standard ramp

Standard ramp is used. During deceleration, if the voltage rises to the standard ramp level (Pr **2.08**) it causes a controller to operate, the output of which changes the demanded load current in the motor. As the controller regulates the link voltage, the motor deceleration increases as the speed approaches zero speed. When the motor deceleration rate reaches the programmed deceleration rate the controller ceases to operate and the drive continues to decelerate at the programmed rate. If the standard ramp voltage (Pr **2.08**) is set lower than the nominal DC Bus level the drive will not decelerate the motor, but it will coast to rest. The output of the ramp controller (when active) is a current demand that is fed to the frequency changing current controller (Open-loop modes) or the torque producing current controller (Closed-loop vector or Servo modes). The gain of these controllers can be modified with Pr **4.13** and Pr **4.14**.



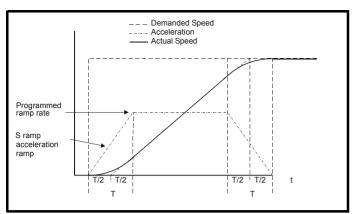
2: Standard ramp with motor voltage boost

This mode is the same as normal standard ramp mode except that the motor voltage is boosted by 20%. This increases the losses in the motor giving faster deceleration.

	2.0	8	Standa	ard rar	np volt	age)				
R۱	N	Uni		RA						US	
€	D	C_VOL	0 to TAGE_		IAX V	Ŷ		400V 57	0V driv drive: E L 5V driv DV drive	UR> 7 JSA> 7 e: 895	

This voltage is used as the control level for standard ramp mode. If this parameter is set too low the machine will coast to rest, and if it is set too high and no braking resistor is used the drive may give an over-volt 'OV' trip. The minimum level should be greater than the voltage produced on the DC Bus by the highest supply voltage. Normally the DC Bus voltage will be approximately the rms supply line voltage $x \sqrt{2}$.

11.21.3 S ramps


	2.06 S ramp enable										
R١	Ν	Bit								US	
ţ		OFI	F (0) or	On (1)		⇔			OFF (0)	

Setting this parameter enables the S ramp function. S ramp is disabled during deceleration using standard ramp. When the motor is accelerated again after decelerating in standard ramp the acceleration ramp used by the S ramp function is reset to zero.

	2.0)7	S ram	p acce	leratio	n lir	nit			
R١	Ν	Uni							US	
OL				300.0 00Hz				3.1		
VT	€	0	.000 to	100.00	00	⇔		1.50	00	
sv			s ² /10	00rpm				0.03	80	

This parameter defines the maximum rate of change of acceleration/ deceleration. The default values have been chosen such that for the default ramps and maximum speed, the curved parts of the S will be 25% of the original ramp if S ramp is enabled.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
					•								

Since the ramp rate is defined in s/100Hz or s/1000rpm and the S ramp parameter is defined in s²/100Hz or s²/1000rpm, the time T for the 'curved' part of the S can be determined from:

T = S ramp rate of change / Ramp rate

Enabling S ramp increases the total ramp time by the period T since an additional T/2 is added to each end of the ramp in producing the S.

11.21.4 Torque modes

	4.0	8	Torqu	e refer	ence					
R١	N	Bi							US	
€	±ι	JSER_	CURRE	ENT_M	AX %	⇒		0.00		

Parameter for main torque reference. The normal update rate for the torque reference is 4ms. However if analog inputs 2 or 3 on the drive are used as the source of the reference, the drive is in closed-loop vector or servo mode and the analog inputs are in voltage mode with zero offset, the sample time is reduced to $250 \mu s$.

	4.1	1	Torqu	e mode	e selec	tor				
R١	N	Uni							US	
OL	介		0 te	o 1		Ц С		0		
CL	Ŷ		0 te	o 4		~		0		

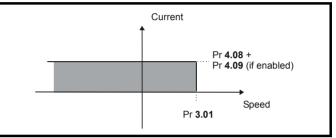
Open loop

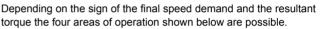
If this parameter is 0 normal frequency control is used. If this parameter is set to 1 the current demand is connected to the current PI controller giving closed loop torque/current demand as shown below. The current error is passed through proportional and integral terms to give a frequency reference which is limited to the range: -SPEED_FREQ_MAX to +SPEED_FREQ_MAX.

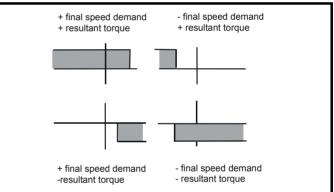
Closed loop vector and Servo

When this parameter is set to 1, 2 or 3 the ramps are not active while the drive is in the run state. When the drive is taken out of the run state, but not disabled, the appropriate stopping mode is used. It is recommended that coast stopping or stopping without ramps are used. However, if ramp stop mode is used the ramp output is pre-loaded with the actual speed at the changeover point to avoid unwanted jumps in the speed reference.

0: Speed control mode


The torque demand is equal to the speed loop output.


1: Torque control


The torque demand is given by the sum of the torque reference and the torque offset, if enabled. The speed is not limited in any way, however, the drive will trip at the overspeed threshold if runaway occurs.

2: Torque control with speed override

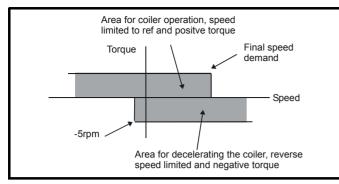
The output of the speed loop defines the torque demand, but is limited between 0 and the resultant torque reference (Pr **4.08** and Pr **4.09** (if enabled)). The effect is to produce an operating area as shown below if the final speed demand and the resultant torque reference are both positive. The speed controller will try and accelerate the machine to the final speed demand level with a torque demand defined by the resultant torque reference. However, the speed cannot exceed the reference because the required torque would be negative, and so it would be clamped to zero.

This mode of operation can be used where torque control is required, but the maximum speed must be limited by the drive.

3: Coiler/uncoiler mode

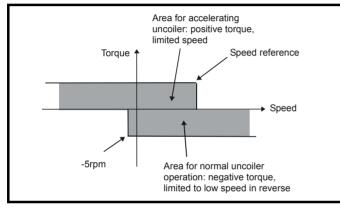
Positive final speed demand:

A positive resultant torque will give torque control with a positive speed limit defined by the final speed demand. A negative resultant torque will give torque control with a negative speed limit of -5rpm.


Negative final speed demand:

A negative resultant torque will give torque control with a negative speed limit defined by the final speed demand. A positive resultant torque will give torque control with a positive speed limit of +5rpm.

Example of coiler operation:


This is an example of a coiler operating in the positive direction. The final speed demand is set to a positive value just above the coiler reference speed. If the resultant torque demand is positive the coiler operates with a limited speed, so that if the material breaks the speed does not exceed a level just above the reference. It is also possible to decelerate the coiler with a negative resultant torque demand. The coiler will decelerate down to -5rpm until a stop is applied. The operating area is shown in the following diagram.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Example of uncoiler operation:

This is an example for an uncoiler operating in the positive direction. The final speed demand should be set to a level just above the maximum normal speed. When the resultant torque demand is negative the uncoiler will apply tension and try and rotate at 5rpm in reverse, and so take up any slack. The uncoiler can operate at any positive speed applying tension. If it is necessary to accelerate the uncoiler a positive resultant torque demand is used. The speed will be limited to the final speed demand. The operating area is the same as that for the coiler and is shown below:

4: Speed control with torque feed-forward

The drive operates under speed control, but a torque value may be added to the output of the speed controller. This can be used to improve the regulation of systems where the speed loop gains need to be low for stability.

11.21.5 Stop modes

	6.0	1	Stop r	node						
R۱	Ν	Txt							US	
OL	î		St (0), i dcl (3) diSAb	, td.dcl				rP (1)	
VT	v	С	OASt ((, ,	1),	Ĺ				
sv			no.rl	P (2)				no.rP	(2)	

Open-loop

Stopping is in two distinct phases: decelerating to stop, and stopped.

Stopping Mode	Phase 1	Phase 2	Comments
0: Coast	Inverter disabled	Drive cannot be re-enabled for 1s	Delay in phase 2 allows rotor flux to decay
1: Ramp	Ramp down to zero frequency	Wait for 1s with inverter enabled	
2: Ramp followed by DC injection	Ramp down to zero frequency	Inject DC at level specified by Pr 6.06 for time defined by Pr 6.07	
3: DC injection with zero speed detection	Low frequency current injection with detection of low speed before next phase	Inject DC at level specified by Pr 6.06 for time defined by Pr 6.07	The drive automatically senses low speed and therefore it adjusts the injection time to suit the application. If the injection current level is too small the drive will not sense low speed (normally a minimum of 50-60% is required).
4: Timed DC injection braking stop	Inject DC at level specified by Pr 6.06 for time specified by Pr 6.07		
5: Disable	Inverter disabled		Allows the drive to be immediately disabled and then re-enabled again immediately if required.

Once modes 3 or 4 have begun the drive must go through the ready state before being restarted either by stopping, tripping or being disabled.

If this parameter is set to DiASbLE (5), the disable stopping mode is used when the run command is removed. This mode will allow the drive to be started immediately by re-applying the run command. However, if the drive is disabled by removing the drive enable (i.e. via the Enable SAFE TORQUE OFF (SECURE DISABLE) input or Pr **6.15** *Drive enable*) then the drive cannot be re-enabled for 1s.

Closed loop vector and Servo

Only one stopping phases exists and the ready state is entered as soon as the single stopping action is complete.

Stopping Mode	Action
0: Coast	Inhibits the inverter
1: Ramp	Stop with ramp
2: No ramp	Stop with no ramp

The motor can be stopped with position orientation after stopping. This mode is selected with the position controller mode parameter (Pr 13.10). When this mode is selected Pr 6.01 has no effect.

	6.0)6	Injecti	on bra	king le	vel				
R١	N	Uni					RA		US	
OL	$\hat{\mathbb{V}}$		0.0 to 1	50.0 %)	☆		100.0	0	

Defines the current level used during DC injection braking as a percentage of motor rated current as defined by Pr **5.07**.

Safety Product Mechanical Electrical Getting Basic Runningthe Information information Installation Installation Started parameters motor	Optimization SMARTCAR operation	D Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	------------------------------------	------------------	---------------------	-------------------	-------------	---------------------------

	6.0)7	Injection braking time									
RV	RW Uni								US			
OL	$\hat{\mathbb{C}}$		0.0 to	25.0 s		⇒		1.0				

Defines the time of injection braking during phase 1 with stopping modes 3 and 4, and during phase 2 with stopping mode 2 (see Pr **6.01**).

	6.08 Hold zero speed									
R\	RW Bit								US	
OL								OFF (0)	
VT	\hat{v}	0	FF (0)	or On (1)	⇒			0)	
sv						On (1	1)			

When this bit is set the drive remains active even when the run command has been removed and the motor has reached standstill. The drive goes to the 'StoP' state instead of the 'rdy' state.

11.21.6 Line power supply loss modes

	6.0	3	Line power supply loss mode								
R١	RW Txt									US	
\hat{U}						⇒			diS (0))	

0: diS

There is no line power supply loss detection and the drive operates normally only as long as the DC bus voltage remains within specification (i.e. >Vuu). Once the voltage falls below Vuu an under-voltage 'UV' trip occurs. This will reset itself if the voltage rises above Vuu Restart, as stated in the table below.

1: StoP - Open-loop

The action taken by the drive is the same as for ride through mode, except the ramp down rate is at least as fast as the deceleration ramp setting and the drive will continue to decelerate and stop even if the line power supply is re-applied. If normal or timed injection braking is selected the drive will use ramp mode to stop on loss of the supply. If ramp stop followed by injection braking is selected, the drive will ramp to a stop and then attempt to apply dc injection. At this point, unless the line power supply has been restored, the drive is likely to initiate a trip.

1: StoP - Closed-loop vector or Servo

The speed reference is set to zero and the ramps are disabled allowing the drive to decelerate the motor to a stop under current limit. If the Line power supply is re-applied while the motor is stopping any run signal is ignored until the motor has stopped. If the current limit value is set very low level the drive may trip UV before the motor has stopped.

2: ridE.th

The drive detects line power supply loss when the DC Bus voltage falls below Vml_1 . The drive then enters a mode where a closed-loop controller attempts to hold the DC Bus level at Vml_1 . This causes the motor to decelerate at a rate that increases as the speed falls. If the line power supply is re-applied it will force the DC Bus voltage above the detection threshold Vml_3 and the drive will continue to operate normally. The output of the line power supply loss controller is a current demand that is fed into the current control system and therefore the gain Pr **4.13** and Pr **4.14** must be set up for optimum control. See parameters Pr **4.13** and Pr **4.14** for set-up details.

The following table shows the voltage levels used by drives with each voltage rating.

Voltage level	200V drive	400V drive	575V drive	690V drive
Vuu	175	330	43	35
Vml ₁	205*	410*	54	0*
Vml ₂	Vml ₁ - 10V	Vml ₁ - 20V	Vml ₁	- 25V
Vml ₃	Vml ₁ + 10V	Vml ₁ + 15V	Vml ₁	+ 50V
Vuu Restart	215	425	59	90

 * Vml_1 is defined by Pr **6.48**. The values in the table above are the default values.

		6.4	8	Line p	ower s	supply	los	s rio	de thro	ugh de	tectior	level
	R۷	V	Uni						RA		US	
Û	¢	DC	C_VOL	0 to TAGE_		1AX V	ᡎ		40 57	0V driv 0V driv 5V driv 0V driv	e: 410 e: 540	

The line power supply loss detection level can be adjusted using this parameter. If the value is reduced below the default value, the default value is used by the drive. If the level is set too high, so that the line power supply loss detection becomes active under normal operating conditions, the motor will coast to a stop.

4.	13	Curre	nt loop	P gair	1				
RW	Uni							US	
OL 🗘					₽	All vo	ltage ra	atings: 2	20
CL (ĵ		0 to 3	0,000		Ŷ	40 57	00V driv 0V driv 5V driv 0V driv	e: 150 e: 180	

	4.1	4	Curre	nt loop	l gain	_	Current loop I gain								
R١	RW Uni								US						
OL	ţ					₽	All vo	ltage r	atings: 4	40					
CL	€		0 to 3	0,000		⇔	400 575)V drive 5V drive	e: 1,000 e: 2,000 e: 2,400 e: 3,000						

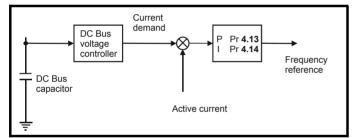
Open-loop

These parameters control the proportional and integral gains of the current controller used in the open loop drive. As already mentioned the current controller either provides current limits or closed loop torque control by modifying the drive output frequency. The control loop is also used in its torque mode during line power supply loss, or when the controlled mode standard ramp is active and the drive is decelerating, to regulate the flow of current into the drive. Although the default settings have been chosen to give suitable gains for less demanding applications it may be necessary for the user to adjust the performance of the controller. The following is a guide to setting the gains for different applications.

Current limit operation:

The current limits will normally operate with an integral term only, particularly below the point where field weakening begins. The proportional term is inherent in the loop. The integral term must be increased enough to counter the effect of the ramp which is still active even in current limit. For example, if the drive is operating at constant frequency and is overloaded the current limit system will try to reduce the output frequency to reduce the load.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information


At the same time the ramp will try to increase the frequency back up to the demand level. If the integral gain is increased too far the first signs of instability will occur when operating around the point where field weakening begins. These oscillations can be reduced by increasing the proportional gain. A system has been included to prevent regulation because of the opposite actions of the ramps and the current limit. This can reduce the actual level that the current limit becomes active by 12.5%. This still allows the current to increase up to the current limit set by the user. However the current limit flag (Pr **10.09**) could become active up to 12.5% below the current limit depending on the ramp rate used.

Torque control:

Again the controller will normally operate with an integral term only, particularly below the point where field weakening begins. The first signs of instability will appear around base speed, and can be reduced by increasing the proportional gain. The controller can be less stable in torque control mode rather than when it is used for current limiting. This is because load helps to stabilise the controller, and under torque control the drive may operate with light load. Under current limit the drive is often under heavy load unless the current limits are set at a low level.

Line power supply loss and controlled standard ramp:

The DC bus voltage controller becomes active if line power supply loss detection is enabled and the drive supply is lost or controlled standard ramp is being used and the machine is regenerating. The DC bus controller attempts to hold the DC bus voltage at a fixed level by controlling the flow of current from the drive inverter into its DC bus capacitors. The output of the DC bus controller is a current demand which is fed into the current PI controller as shown in the following diagram.

Although it is not usually necessary the DC bus voltage controller can be adjusted with Pr **5.31**. However, it may often be necessary to adjust the current controller gains to obtain the required performance. If the gains are not suitable it is best to set up the drive in torque control first. Set the gains to a value that does not cause instability around the point at which field weakening occurs. Then revert back to open loop speed control in standard ramp mode. To test the controller the supply should be removed while the motor is running. It is likely that the gains can be increased further if required because the DC bus voltage controller has a stabilising effect, provided that the drive is not required to operate in torque control mode.

Closed-loop vector and Servo

The Kp and Ki gains are used in the voltage based current controller. The default values give satisfactory operation with most motors. However it may be necessary to change the gains to improve the performance. The proportional gain (Pr **4.13**) is the most critical value in controlling the performance. Either the value can be set by auto-tuning (see Pr **5.12**) or it can be set by the user so that

Where:

T is the sample time of the current controllers. The drive compensates for any change of sample time, and so it should be assumed that the sample time is equivalent to the lowest sample rate of $167 \mu s$.

L is the motor inductance. For a servo motor this is half the phase to phase inductance that is normally specified by the manufacturer. For an induction motor this is the per phase transient inductance (σL_s). This is the inductance value stored in Pr **5.24** after the autotune test is carried out. If σL_s cannot be measured it can be calculated from the steady state per-phase equivalent circuit of the motor as follows:

$$_{5}L_{s} = L_{s} - \left(\frac{L_{m}^{2}}{L_{r}}\right)$$

 ${\sf I}_{\sf fs}$ is the peak full scale current feedback = K_C x $\sqrt{2}$ / 0.45.

Where K_C is defined in Table 11-5.

 $V_{\mbox{\scriptsize fs}}$ is the maximum DC Bus voltage.

Therefore:

Pr 4.13 = Kp = (L / 167µs) x (K_C x
$$\sqrt{2}$$
 / 0.45 / V_{fs}) x (256 / 5) = K x L x K_C

Where:

 $K = [\sqrt{2} / (0.45 \times V_{fs} \times 167 \mu s)] \times (256 / 5)$

Drive voltage rating	Vfs	к
200V	415V	2322
400V	830V	1161
575V	990V	973
690V	1190V	809

This set-up will give a step response with minimum overshoot after a step change of current reference. The approximate performance of the current controllers will be as given below. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth, however, this gives at step response with approximately 12.5% overshoot.

Switching frequency kHz	Current control sample time μs	Gain bandwidth Hz	Phase delay μs
3	167	TBA	1160
4	125	TBA	875
6	83	TBA	581
8	125	TBA	625
12	83	TBA	415
16	125	TBA	625

The integral gain (Pr 4.14) is less critical and should be set so that

Pr 4.14 = Ki = Kp x 256 x T / τ_m

Where:

 τ_{m} is the motor time constant (L / R).

R is the per phase stator resistance of the motor (i.e. half the resistance measured between two phases).

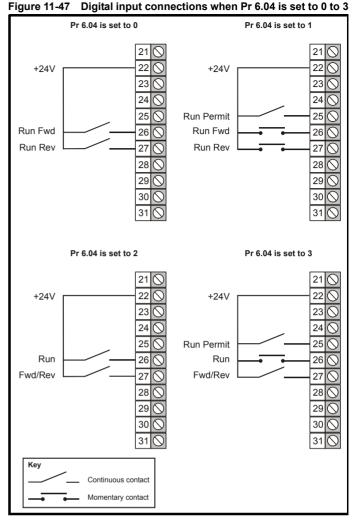
Therefore

The above equation gives a conservative value of integral gain. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed closed-loop induction motor applications) the integral gain may need to have a significantly higher value.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

11.21.7 Start / stop logic modes

	6.0)4	Start / stop logic select									
R	W	Uni								US		
$\hat{\mathbb{V}}$			0 to 4	4		⇔			0			


This parameter is provided to allow the user to select several predefined digital input routing macros to control the sequencer. When a value between 0 and 3 is selected the drive processor continuously updates the destination parameters for digital I/O T25, T26 and T27, and the enable sequencer latching bit (Pr **6.40**). When a value of 4 is selected the destination parameters for these digital I/O and Pr **6.40** can be modified by the user.

If Pr **6.04** is changed then a drive reset is required before the function of T25, T26 or T27 will become active.

Pr 6.04	T25 (Pr 8.22)	T26 (Pr 8.23)	T27 (Pr 8.24)	Pr 6.40
0	Pr 6.29	Pr 6.30	Pr 6.32	0
	(Fast Disable)	(Run Forward)	(Run Reverse)	(Non Latching)
1	Pr 6.39	Pr 6.30	Pr 6.32	1
	(Run Permit)	(Run Forward)	(Run Reverse)	(Latching)
2	Pr 6.29	Pr 6.34	Pr 6.33	0
	(Fast Disable)	(Run)	(Fwd/Rev)	(Non Latching)
3	Pr 6.39	Pr 6.34	Pr 6.33	1
	(Run Permit)	(Run)	(Fwd/Rev)	(Latching)
4	User	User	User	User
	programmable	programmable	programmable	programmable

If Pr **6.04** has been set to a value of 0 to 3, then setting Pr **6.04** to 4 does not automatically reconfigure terminals T25, T26 and T27 to their default functions. To return terminals T25, T26 and T27 to their default functions, one of the following operations should be performed.

- Drive defaults should be restored. See section 5.8 *Restoring* parameter defaults on page 100 for details.
- Manually set Pr 6.04 to 4, Pr 6.40 to 0, Pr 8.22 to 10.33, Pr 8.23 to 6.30, and Pr 8.24 to 6.32.

	6.4	0	Enable	e sequ	encer l	atchin	g			
R۱	N	Bit							US	
ţ		OFI	F (0) or	On (1)		⇔		OFF (0)	

This parameter enables sequencer latching. When sequencer latching is used, a digital input must be used as a run permit or not stop input. The digital input should write to Pr **6.39**. The run permit or not stop input must be made active to allow the drive to run. Making the run permit or not stop input inactive resets the latch and stops the drive.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

11.21.8 Catch a spinning motor

	6.0)9	Catch	a spin	ning m	oto	or			
R۷	N	Uni							US	
OL	☆		0 te	o 3				0		
CL	Ŷ		0 te	o 1				1		

Open-loop

When the drive is enabled with this parameter at zero, the output frequency starts at zero and ramps to the required reference. When the drive is enabled with this parameter at a non-zero value, the drive performs a start-up test to determine the motor speed and then sets the initial output frequency to the synchronous frequency of the motor.

The test is not carried out and the motor frequency starts at zero if one of the following is true.

- The run command is given when the drive is in the stop state
- The drive is first enabled after power-up with Ur_I voltage mode (Pr 5.14 = Ur_I).
- The run command is given with Ur_S voltage mode (Pr 5.14 = Ur_S).

With default parameters the length of the test is approximately 250ms, however, if the motor has a long rotor time constant (usually large motors) it may be necessary to extend the test time. The drive will do this automatically if the motor parameters including the rated load rpm are set up correctly for the motor.

For the test to operate correctly it is important that the stator resistance (Pr **5.17** or Pr **21.12**) is set up correctly. This applies even if fixed boost (Pr **5.14** = Fd) or square law (Pr **5.14** = SrE) voltage mode is being used. The test uses the rated magnetizing current of the motor during the test, therefore the rated current (Pr **5.07**, Pr **21.07** and Pr **5.10**, Pr **21.10**) and power factor should be set to values close to those of the motor, although these parameters are not as critical as the stator resistance. For larger motors it may be necessary to increase Pr **5.40** *Spin start boost* from its default value of 1.0 for the drive to successfully detect the motor speed.

It should be noted that a stationary lightly loaded motor with low inertia might move slightly during the test. The direction of the movement is undefined. Restrictions may be placed on the direction of this movement and on the frequencies detected by the drive as follows:

Pr 6.09	Function
0	Disabled
1	Detect all frequencies
2	Detect positive frequencies only
3	Detect negative frequencies only

Closed-loop vector and Servo

When the drive is enabled with this bit at zero, the post ramp reference (Pr **2.01**) starts at zero and ramps to the required reference. When the drive is enabled with this bit at one, the post ramp reference is set to the motor speed.

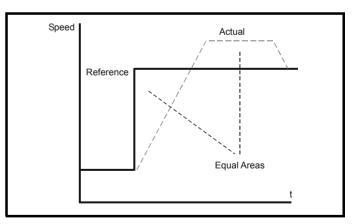
When closed-loop vector mode is used without position feedback, and catch a spinning motor is not required, this parameter should be set to zero as this avoids unwanted movement of the motor shaft when zero speed is required. When closed-loop vector mode without position feedback is used with larger motors it may be necessary to increase Pr **5.40** *Spin start boost* from its default value of 1.0 for the drive to successfully detect the motor speed.

5.4	0	Spin start boost										
RW	Uni								US			
OL VT		0.0 to	10.0		分			1.0				

If Pr **6.09** is set to enable the catch a spinning motor function in openloop mode or closed-loop vector mode without position feedback, (Pr **2.24** = 1 or 2) this parameter defines a spalling function used by the

(Pr **3.24** = 1 or 3) this parameter defines a scaling function used by the algorithm that detects the speed of the motor. It is likely that for smaller motors the default value of 1.0 is suitable, but for larger motors this parameter may need to be increased. If the value of this parameter is too large the motor may accelerate from standstill when the drive is enabled. If the value of this parameter is too small the drive will detect the motor speed as zero even if the motor is spinning.

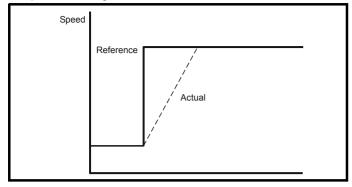
11.21.9 Position modes


	13.	10	Positi	on con	ntroller	mo	de			
R١	N	Uni							US	
OL	介		0 t	o 2		⇔		0		
CL	.∿		0 t	o 6		~		0		

This parameter is used to set the position controller mode as shown in the table below.

Parameter value	Mode	Feed forward active
0	Position controller disabled	
1	Rigid position control	\checkmark
2	Rigid position control	
3	Non-rigid position control	✓
4	Non-rigid position control	
5	Orientation on stop	
6	Orientation on stop and when drive enabled	

Rigid position control


In rigid position control the position error is always accumulated. This means that, if for example, the slave shaft is slowed down due to excessive load, the target position will eventually be recovered by running at a higher speed when the load is removed.

Safety Information	Product Mechanic information Installatio		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---	--	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Non-rigid position control

In non-rigid position control the position loop is only active when the 'At Speed' condition is met (see Pr 3.06). This allows slippage to occur while the speed error is high.

Velocity feed forward

The position controller can generate a velocity feed forwards value from the speed of the reference encoder. The feed-forwards value is passed to menu, and so ramps may be included if required. Because the position controller only has a proportional gain, it is necessary to use velocity feed-forwards to prevent a constant position error that would be proportional to the speed of the reference position.

If for any reason the user wishes to provide the velocity feed forward from a source other than the reference position, the feed forward system can be made inactive, i.e. Pr **13.10** = 2 or 4. The external feed forward can be provided via Menu 1 from any of the frequency/speed references. However, if the feed forward level is not correct a constant position error will exist.

Relative jogging

If relative jogging is enabled the feedback position can be made to move relative the reference position at the speed defined by Pr 13.17.

Orientation

If Pr **13.10** is 5 the drive orientates the motor following a stop command. If hold zero speed is enabled (Pr 6.08 = 1) the drive remains in position control when orientation is complete and hold the orientation position. If hold zero speed is not enabled the drive is disabled when orientation is complete.

If Pr 13.10 is 6 the drive orientates the motor following a stop command and whenever the drive is enabled provided that hold zero speed is enabled (Pr 6.08 = 1). This ensures that the spindle is always in the same position following the drive being enabled.

When orientating from a stop command the drive goes through the following sequence:

- 1. The motor is decelerated or accelerated to the speed limit programmed in Pr 13.12, using ramps if these are enabled, in the direction the motor was previously running.
- 2. When the ramp output reaches the speed set in Pr 13.12, ramps are disabled and the motor continues to rotate until the position is found to be close to the target position (i.e. within 1/32 of a revolution). At this point the speed demand is set to 0 and the position loop is closed
- 3. When the position is within the window defined by Pr 13.14, the orientation complete indication is given in Pr 13.15.

The stop mode selected by Pr 6.01 has no effect if orientation is enabled.

Fast Disable 11.21.10 Software V01.10.00 and later

	6.2	9	Hardw	are en	able				
R	0	Bit					NC	PT	
$\hat{\mathbf{v}}$	OFF (0) or On (1)								

This bit is a duplicate of Pr 8.09 and reflects the state of the enable input. With software V01.10.00 and later, if the destination of one of the drive digital I/O (Pr 8.21 to Pr 8.26) is set to Pr 6.29 and the I/O is set as an input, the state of the input does not affect the value of this parameter as it is protected, however, it does provide a fast disable function.

The SAFE TORQUE OFF (SECURE DISABLE) input to the drive (T31) disables the drive in hardware by removing the gate drive signals from the inverter IGBT's and also disables the drive via the software system. When the drive is disabled by de-activating the SAFE TORQUE OFF (SECURE DISABLE) input (T31) there can be a delay of up to 20ms (typically 8ms) before the drive is disabled. However, if a digital I/O is set up to provide the fast disable function it is possible to disable the drive within 600µs of de-activating the input. To do this an enable signal should be given to both the SAFE TORQUE OFF (SECURE DISABLE) input (T31) and to the digital I/O selected for the fast disable function. The state of the digital I/O including the effect of its associated invert parameter is ANDed with the SAFE TORQUE OFF (SECURE DISABLE) (T31) to enable the drive

If the safety function of the SAFE TORQUE OFF (SECURE DISABLE) input is required then there must not be a direct connection between the SAFE TORQUE OFF (SECURE DISABLE) input (T31) and any other digital I/O on the drive. If the safety function of the SAFE TORQUE OFF (SECURE DISABLE) input and the fast disable function is required then the drive should be given two separate independent enable signals. A safety related enable from a safe source connected to the SAFE TORQUE OFF (SECURE DISABLE) input on the drive. A second enable connected to the digital I/O on the drive selected for the fast disable function. The circuit must be arranged so that a fault which causes the fast input to be forced high cannot cause the SAFE TORQUE OFF (SECURE DISABLE) input to be forced high, including the case where a component such as a blocking diode has failed

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	------------------------	----------------	------------------------	-------------------	-------------	---------------------------

12 Technical Data

12.1 Drive technical data

12.1.1 Power and current ratings (Derating for switching frequency and temperature)

Table 12-1 Maximum permissible continuous output current @ 40°C (104°F) ambient for 400V IP21 and @ 33 °C (91 °F) ambient for 400V IP23 Free Standing drives

			Normal Duty	1		Heavy Duty							
Model	Nomina	I Rating		Permissible of the second s		Nomina	al rating	Maximum Permissible continuous output current (A)					
·	kW	hp	3kHz	4kHz	6kHz	kW	hp	3kHz	4kHZ	6kHz			
SP64X1	110	150	205			90	150	180					
SP64X2	132	200	236			110	150	210					
SP74X1	160	250	290			132	200	238					
SP74X2	185	280	335			160	250	290					
SP84X1	225	300	389	354	271	185	280	335	278	205			
SP84X2	250	400	450	410	313	225	300	389	323	238			
SP84X3	315	450	545	496	379	250	400	450	374	275			
SP84X4	355	500	620	564	432	315	450	545	453	333			
SP94X1	400	600	690	628	480	355	500	620	515	379			
SP94X3	500	800	900	819	626	450	700	790	657	483			
SP94X4	560	900	1010	919	703	500	800	900	748	550			
SP94X5	675	1000	1164	1060	810	560	900	1010	839	618			

Model		Normal Duty Maximum Permissible continuous output current (A)		Heavy Duty Maximum Permissible continuous output current (A)				
	3kHz	4kHz	6kHz	3kHz	4kHz	6kHz		
SP64X1-E23	190			167				
SP64X2-E23	218			194				
SP74X1-E23	268			220				
SP74X2-E23	310			268				
SP84X1-E23	360			310				
SP84X2-E23	416			360				
SP84X3-E23	504			416				
SP84X4-E23	573			504				
SP94X1-E23	690			620				
SP94X3-E23	832			730				
SP94X4-E23	934			832				
SP94X5-E23	1076			934				

Safety Product Mechanical Electrical Getting Basic Runningthe Information Installation Installation Started parameters motor	Optimization Optim
--	--

Table 12-3 Maximum permissible continuous output current @ 40°C (104°F) ambient for 690V IP21 and @ 33 °C (91 °F) ambient for 690V IP23 Free Standing drives

	Normal Duty					Heavy Duty					
Model	Nominal Rating		Maximum Permissible continuo output current (A)			Nominal rati			Permissible tput current		
	kW	hP	3kHz	4kHz	6kHz	kW	hP	3kHz	4kHZ	6kHz	
SP66X1	110	125	125			90	100	100			
SP66X2	132	150	144			110	125	125			
SP76X1	160	150	168			132	150	144			
SP76X2	185	200	192			160	150	168			
SP86X1	200	250	231			185	200	186			
SP86X2	225	300	266			200	250	231			
SP86X3	315	350	311			250	250	266			
SP86X4	355	400	355			315	350	311			
SP96X1	400	450	400			355	350	347			
SP96X3	500	600	533		1	450	500	466			
SP96X4	560	700	616		1	500	600	533			
SP96X5	630	800	711			560	700	622			

Table 12-4 Maximum permissible continuous output current @ 50°C (122°F) ambient for 400V Free Standing drives

Model		Normal Duty Im Permissible cont output current (A)	inuous	Heavy Duty Maximum Permissible continuous output current (A)				
_	3kHz	4kHz	6kHz	3kHz	4kHz	6kHz		
SP64X1								
SP64X2								
SP74X1								
SP74X2								
SP84X1	327	298	228	303	252	185		
SP84X2	378	344	263	352	292	215		
SP84X3	458	417	319	407	338	249		
SP84X4	521	474	363	493	410	302		
SP94X1	580	528	404	561	466	343		
SP94X3	757	689	527	715	594	437		
SP94X4	849	773	591	814	677	498		
SP94X5	979	897	681	914	759	559		

12.1.2 Power dissipation

Table 12-5 Losses @ 40°C (104°F) ambient for 400 V IP21 and @ 33 °C (91 °F) ambient for 400V IP23 Free Standing drives

	Dri	ve losses (W) taking	into consideration a	ny current derating f	or the given condition	ons		
Model		Normal Duty		Heavy Duty				
	3kHz	4kHz	6kHz	3kHz	4kHz	6kHz		
SP64X1								
SP64X2								
SP74X1								
SP74X2								
SP84X1	4592	5061	5769	3968	4355	4919		
SP84X2	5102	5624	6410	4826	5297	5983		
SP84X3	6429	7086	8077	5363	5885	6648		
SP84X4	7245	7986	9103	6757	7416	8376		
SP94X1	8163	8998	10256	7615	8357	9440		
SP94X3	10204	11247	12821	9653	10594	11966		
SP94X4	11429	12597	14359	10725	11771	13296		
SP94X5	13776	15184	17308	12012	13183	14891		

Diagnostics	Safety Information	Product Mechanical information Installation	Electrical Getting Installation Started		Optimization	SMARTCARD operation		Advanced parameters		UL Listing Information
-------------	-----------------------	--	--	--	--------------	---------------------	--	------------------------	--	---------------------------

12.1.3 Supply requirements

Voltage:

SPX4XX 380V to 480V ±10% SPX6XX 500V to 690V ±10%

Number of phases: 3

Maximum supply imbalance: 2% negative phase sequence (equivalent to 3% voltage imbalance between phases).

Frequency range: 48 to 65 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to $100 \mbox{kA}$

12.1.4 Motor requirements

No. of phases: 3

Maximum voltage:

Unidrive SP (400V): 480V Unidrive SP (690V): 690V

12.1.5 Temperature, humidity and cooling method

Ambient temperature operating range: 0°C to 50°C (32°F to 122°F).

Output current derating must be applied at ambient temperatures >40°C (104°F).

Minimum temperature at power-up:

-15°C (5°F), the supply must be cycled when the drive has warmed up to 0°C (32°F).

Cooling method: Forced convection

Maximum humidity: 95% non-condensing at 40°C (104°F)

12.1.6 Storage

-40°C (-40°F) to +50°C (122°F) for long term storage, or to +70°C (158°F) for short term storage.

12.1.7 Altitude

Altitude range: 0 to 3,000m (9,900 ft), subject to the following conditions:

1,000m to 3,000m (3,300 ft to 9,900 ft) above sea level: de-rate the maximum output current from the specified figure by 1% per 100m (330 ft) above 1,000m (3,300 ft)

For example at 3,000m (9,900ft) the output current of the drive would have to be de-rated by 20%.

12.1.8 IP / UL Rating

The Unidrive SP Free Standing drive is rated to IP21 pollution degree 2 (dry, non-conductive contamination only) (NEMA 1). An IP23 option is also available.

The IP rating of a product is a measure of protection against ingress and contact to foreign bodies and water. It is stated as IP XX, where the two digits (XX) indicate the degree of protection provided as shown in Table 12-6.

Table 12-6 IP Rating degrees of protection

First digit Second digit Protection against contact and ingress of foreign bodies Protection against ingres 0 No protection 0 No protection 1 foreign bodies φ > 50mm (large area contact with the hand) 1 Protection against ve falling drops of water falling drops of water (finger) 2 size foreign bodies φ > 12mm (tools, wires) 2 Protection against sp (up to 15° from the version against sp (up to 60° from the version against sp (from all directions)) Protection against dust 5 deposit, complete protection against he protection	
ingress of foreign bodies 0 No protection 0 No protection 0 No protection Protection against large 1 Protection against ve falling drops of water falling drops of water falling drops of water falling drops of water falling drops of so the vert form all directions) Protection against granular 4 Protection against sp (up to 60° from the vert from all directions) Protection against dust 5 Protection against the splash water (from all directions)	
Protection against large foreign bodies φ > 50mm 1 Protection against ve falling drops of water for against sp. Protection against sp. Protection against sp. Protection against granular Protection against sp. Protection against dust Protection against he sp. Protection against dust Protection against he sp.	s of water
1 foreign bodies φ > 50mm (large area contact with the hand) Protection against ve falling drops of water falling drops of water falling drops of water 2 Protection against medium (finger) 2 Protection against medium (finger) 2 Protection against sp (up to 15° from the ve (up to 15° from the ve (up to 60° from the ve from all directions) Protection against granular 4 Protection against sp (from all directions) Protection against dust 5 Protection against he splash water (from all	
2 size foreign bodies φ > 12mm (finger) 2 Protection against sp (up to 15° from the vertice) foreign bodies φ > 2.5mm (tools, wires) 3 foreign bodies φ > 2.5mm (tools, wires) 3 Protection against sp (up to 60° from the vertice) foreign bodies φ > 1mm (tools, wires) 4 foreign bodies φ > 1mm (tools, wires) 4 Protection against sp (from all directions) Protection against dust 5 deposit, complete protection 5	
3 foreign bodies φ > 2.5mm (tools, wires) 3 Protection against sp (up to 60° from the ver- group to 60° from the ver- protection against granular foreign bodies φ > 1mm (tools, wires) 4 Protection against sp (up to 60° from the ver- protection against sp (from all directions) Protection against dust 5 5 Protection against he splash water (from all	
4 foreign bodies φ > 1mm (tools, wires) 4 foreign bodies φ > 1mm (tools, wires) 4 foreign bodies φ > 1mm (tools, form all directions) Protection against dust 9 Protection against he splash water (from all directions)	
5 deposit, complete protection 5 splash water (from all	lashwater
5	
Protection against dust 6 ingress, complete protection against accidental contact. Protection against de (e.g. in heavy seas)	eckwater
7 - 7 Protection against im	imersion
8 - 8 Protection against su	ubmersion

Table 12-7 UL enclosure ratings

UL rating	Description
Type 1	Enclosures are intended for indoor use, primarily to provide a degree of protection against limited amounts of falling dirt.

12.1.9 Corrosive gasses

Concentrations of corrosive gases must not exceed the levels given in: • Table A2 of EN 50178

Class 3C2 of IEC 60721-3-3

This corresponds to the levels typical of urban areas with industrial activities and/or heavy traffic, but not in the immediate neighborhood of industrial sources with chemical emissions.

12.1.10 Vibration

Maximum recommended continuous vibration level 0.14 g r.m.s. broadband 5 to 200 Hz.

NOTE

This is the limit for broad-band (random) vibration. Narrow-band vibration at this level which coincides with a structural resonance could result in premature failure.

12.1.11 Starts per hour

By electronic control: unlimited

By interrupting the AC supply: ≤20 (equally spaced)

12.1.12 Start up time

This is the time taken from the moment of applying power to the drive, to the drive being ready to run the motor:

All sizes: 9s

12.1.13 Output frequency / speed range

Open-loop frequency range: 0 to 3,000Hz

Closed-loop speed range: 0 to 40,000rpm

Closed-loop frequency range: 0 to 1,250Hz*

*(Limit to ~500Hz for good performance)

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
internation	internation	motanation	motanation	otartou	parametere			oporation	. 20	paramotoro	Bala		momutation

12.1.14 Accuracy and resolution Speed:

The absolute frequency and speed accuracy depends on the accuracy of the crystal used with the drive microprocessor. The accuracy of the crystal is 100ppm, and so the absolute frequency/speed accuracy is 100ppm (0.01%) of the reference, when a preset speed is used. If an analog input is used the absolute accuracy is further limited by the absolute accuracy of the analog input.

The following data applies to the drive only; it does not include the performance of the source of the control signals.

Open loop resolution:

Preset frequency reference: 0.1Hz Precision frequency reference: 0.001Hz

Closed loop resolution

Preset speed reference: 0.1rpm Precision speed reference: 0.001rpm Analog input 1: 16bit plus sign Analog input 2: 10bit plus sign

Current:

The resolution of the current feedback is 10bit plus sign. The typical accuracy of the current feedback is typically 0% and worst case 5%.

12.1.15 Roof fan

Roof mounted fans are only fitted in the following Unidrive SP Free Standing drives.

Table 12-8Roof mounted fans

Model	Roo	f Fan
Woder	IP21	IP23
SP6XX1	Not Fitted	1 x Fitted
SP6XX2	Not Fitted	1 x Fitted
SP7XX1	Not Fitted	1 x Fitted
SP7XX2	1 x Fitted	1 x Fitted
SP8XX1	Not Fitted	Not Fitted
SP8XX2	Not Fitted	1 x Fitted
SP8XX3	Not Fitted	1 x Fitted
SP8XX4	1 x Fitted	1 x Fitted
SP9XX1	Not Fitted	Not Fitted
SP9XX3	Not Fitted	2 x Fitted
SP9XX4	Not Fitted	2 x Fitted
SP9XX5	2 x Fitted	2 x Fitted

12.1.16 Acoustic noise

The cooling fans generate the majority of the acoustic noise produced by the drive. The power modules in the drive contain cooling fans. The power modules control the speed at which the fans run at based on the temperature of the power modules and the drive's thermal model system. The SP8414 and SP9415 contain an additional fan at the top of the enclosure(s) which is a single speed fan which runs whenever the drive is powered up.

Table 12-9 gives the acoustic noise produced by the drive for the heatsink fan running at the maximum and minimum speeds.

Table 12-9 Acoustic noise data for Free Standing drives

Size	Max speed dBA	Min speed dBA
6	72	43
7	70*	
8	70*	57*
9	73	60

*These figures are worst case as they include some low level background noise due to the location of the measurement.

12.1.17 Overall dimensions

H Height including surface mounting brackets

- W Width
- D Depth

Table 12-10 Overall Free Standing drive dimensions

Size		Dimension	
5126	Н	w	D
6	2209mm	400mm	600mm
	(87.0in)	(15.74)	(23.62)
7	2209mm	400mm	600mm
	(87.0in)	(15.74)	(23.62)
8	2209mm	400mm	600mm
	(87.0in)	(15.748in)	(23.622in)
9	2209mm	800mm	600mm
	(87.0in)	(31.496in)	(23.622in)

12.1.18 Weights

Table 12-11 Overall Free Standing drive weights

		=			
Size	Model	kg	lb		
6	All	199	90		
7	All	214	97		
8	All	266	586		
9	All	532	1173		

12.1.19 Input current, fuse and cable size ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in Table 12-12.

Table 12-12 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

NOTE

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40°C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

Cofoty	Dusdust	Machanical	El a stria al	O atting a	Desia	Duran in a the			Orthograph	Advanced	Technical		UL Listing
Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	OL LISUNG
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information
					1.1.1				-				

 Table 12-13
 400V
 Free Standing drive input current, fuse and cable size rating

	Maximum	HRC	fuse or bre	aker	Semi-			Cable s	size	
Model	input current	Breaker Rating	HRC IEC class gG	HRC UL class J	conductor IEC class aR	EN60204 UL508C			UL508C	
	Α	Α	Α	Α	Α	Input mm ²	Installation method	Output mm ²	Installation method	Input/ Output kcmil/AWG
SP64X1	185	400	250	250	400	1 x 95	С	1 x 120	С	1 x 300 kcmil
SP64X2	213	400	300	300	400	1 x 120	С	1 x 150	С	1 x 350 kcmil
SP74X1	262	400	400	400	400	1 x 185	С	1 x 185	С	1 x 500 kcmil
SP74X2	302	630	425	450	400	1 x 240	С	1 x 240	С	2 x 4/0 AWG
SP84X1	351	630	500	500	400	2 x 120	С	2 x 150	С	2 x 250 kcmil
SP84X2	406	630	630	600	800	2 x 150	С	2 x 185	С	2 x 300 kcmil
SP84X3	492	800	800		800	2 x 240	С	2 x 240	С	2 x 500 kcmil
SP84X4	599	1000	800		800	2 x 240	С	3 x 185	С	3 x 300 kcmil
SP94X1	622	1000	1000		400	4 x 150	С	4 x 185	С	3 x 350 kcmil
SP94X3	713	1250	1250		800	4 x 240	С	4 x 240	С	3 x 500 kcmil
SP94X4	812	1600	1250		800	4 x 240	С	4 x 240	F	3 x 500 kcmil
SP94X5	911	1600	1600		800	4 x 240	F	4 x 240	G	3 x 500 kcmil
SP84X1-P12	2 x 175	2 x 250	250		400	2 x 120	С	2 x 150	С	2 x 250 kcmil
SP84X2-P12	2 x 203	2 x 400	300		400	2 x 150	С	2 x 185	С	2 x 300 kcmil
SP84X3-P12	2 x 246	2 x 400	400		400	2 x 240	С	2 x 240	С	2 x 500 kcmil
SP84X4-P12	2 x 299	2 x 400	425		400	2 x 240	С	4 x 150	С	3 x 300 kcmil
SP94X1-P12	2 x 311	2 x 630	425		400	4 x 150	С	4 x 185	С	3 x 350 kcmil
SP94X3-P12	2 x 356	2 x 630	500		400	4 x 240	С	4 x 240	С	3 x 500 kcmil
SP94X4-P12	2 x 406	2 x 630	630		400	4 x 240	С	4 x 240	F	4 x 500 kcmil
SP94X5-P12	2 x 455	2 x 800	800		400	4 x 240	F	4 x 240	G	4 x 500 kcmil

		lechanical nstallation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
--	--	------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Table 12-14 690V Free Standing drive input current, fuse and cable size rating

	Maximum	HRC	fuse or brea	aker	Semi-			Cable	size	
Model	input current	Breaker Rating	HRC IEC class gG	UL class J	conductor IEC class aR	EN60204 UL508C			UL508C	
	Α	Α	Α	Α	Α	Input mm ²	Installation method	Output mm ²	Installation method	Input/ Output kcmil/AWG
SP66X1	113	400	300	300	400	1 x 50	С	1 x 50	С	1 x 2/0 AWG
SP66X2	130	400	300	300	400	1 x 70	С	1 x 70	С	1 x 3/0 AWG
SP76X1	152	400	250	250	400	1 x 70	С	1 x 95	С	1 x 4/0 AWG
SP76X2	173	400	250	250	400	1 x 95	С	1 x 95	С	1 x 250 kcmil
SP86X1	208	400	300	300	400	1 x 120	С	1 x 150	С	1 x 350 kcmil
SP86X2	240	400	350	350	800	1 x 150	С	1 x 185	С	1 x 400 kcmil
SP86X3	281	400	400	400	800	1 x 185	С	1 x 240	С	2 x 3/0 AWG
SP86X4	320	630	500	500	800	1 x 240	С	2 x 120	С	2 x 4/0 AWG
SP96X1	361	630	500	500	800	2 x 150	С	2 x 150	С	2 x 250 kcmil
SP96X3	481	800	800		800	2 x 240	С	2 x 240	С	2 x 400 kcmil
SP96X4	556	800	800		800	2 x 240	С	4 x 150	С	3 x 300 kcmil
SP96X5	641	1000	1000		800	4 x 150	С	4 x 185	С	3 x 350 kcmil
SP86X1-P12	2 x 104	2 x 250	200	200	400	2 x 70	С	2 x 70	С	1 x 350 kcmil
SP86X2-P12	2 x 120	2 x 400	200	200	400	2 x 70	С	2 x 95	С	1 x 400 kcmil
SP86X3-P12	2 x 140	2 x 400	250	225	400	2 x 95	С	2 x 120	С	2 x 3/0 AWG
SP86X4-P12	2 x 160	2 x 400	250	250	400	2 x 120	С	2 x 120	С	2 x 4/0 AWG
SP96X1-P12	2 x 180	2 x 400	250	250	400	2 x 150	С	2 x 150	С	2 x 250 kcmil
SP96X3-P12	2 x 240	2 x 400	350	350	400	2 x 240	С	2 x 240	С	2 x 400 kcmil
SP96X4-P12	2 x 278	2 x 400	400	400	400	2 x 240	С	4 x 150	С	3 x 300 kcmil
SP96X5-P12	2 x 320	2 x 630	500	500	400	4 x 150	С	4 x 185	С	3 x 350 kcmil

The Semiconductor IEC class aR fuses for size 8 and 9 drives must be installed within the enclosure, see Figure on page 24. These parts may be bought from Control Techniques, see Table 12-15.

Table 12-15 Fuses

Fuse IEC aR	Part No.
400A	4300-0400
800A	4300-0800

Table 12-16 Installation class

Key to t	Key to the cable installation method (ref: IEC60364-5-52:2001)								
B1	Separate Cables in Conduit								
B2	Multi-core cable in conduit								
С	Multi-core cable in free-air								
E	On perforated tray								
F	Separate cables bunched in groups of three, in free air								
G	Individual cables separated vertically in free air								

NOTE

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40° C ambient of 0.87 (from table A52.14) for cable installation method B2 (multicore cable in conduit).

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

The recommended cable sizes above are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

The Semiconductor IEC class aR fuses for size 8 and 9 drives must be installed within the enclosure section 3.4 *Installing fuses in a Free Standing drive* on page 24. These parts may be bought from Control Techniques, see Table 12-15.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Ontimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

12.1.20 Maximum motor cable lengths

Table 12-17 Maximum motor cable lengths

Model	Maximum Pe	ermissible motor ca	able length		
Woder	3 kHz	4 kHz	6 kHz		
SP6401					
SP6402	250m	185m	125m		
SP7401	(820 ft)	(607 ft)	(410 ft)		
SP7402					
SP8401					
SP8402					
SP8403					
SP8404	500m	370m (1241ft)	250m (820ft)		
SP9401	(1640 ft)				
SP9402					
SP9403					
SP9404					
SP6601					
SP6602	250m	185m (607 ft)	125m		
SP7601	(820 ft)		(410 ft)		
SP7602					
SP8601					
SP8602					
SP8603					
SP8604	500m	370m	250m		
SP9601	(1640 ft)	(1241ft)	(820ft)		
SP9603					
SP9604					
SP9605					

12.1.21 **Braking resistor values** Table 12-18 Minimum resistance values and peak power rating for

the braking resistor at 40°C (104°F)

Model	Minimum resistance* Ω	Instantaneous Power Rating (kW)	Average Power for 60s (kW)
SP64X1	5Ω	122	90
SP64X2	352	122	110
SP74X1	3.80	160	132
SP74X2	5.012	100	160
SP84X1	$2 \times 5\Omega$ resistors	244	180
SP84X2	2 X 312 TESISIOIS	244	220
SP84X3	2 x 3.80 resistors	320	254
SP84X4	2 X 3.012 TESISIOIS		320
SP94X1	$4 \times 5\Omega$ resistors	488	360
SP94X3	4 X 502 TESISIONS	400	440
SP94X4	4 x 3.80 resistors	640	528
SP94X5	4 X 3.00 TESISIOIS	040	640
SP66X1	10Ω	125	83
SP66X2	1022	125	112
SP76X1	6.20	202	136
SP76X2	0.212	202	198
SP86X1	$2 \times 10\Omega$ resistors	250	166
SP86X2	2 X 1012165151015	250	225
SP86X3	2 x 6.20 resistors	404	261
SP86X4		404	396
SP96X1	$4 \times 10 \Omega$ resistors	500	333
SP96X3		500	450
SP96X4	4 x 6.20 resistors	808	544
SP96X5	4 X 0.212 TESISIOIS	000	792

* Resistor tolerance: ±10%

12.1.22Torque settingsTable 12-19Drive control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 N m 0.4 lb ft

Table 12-20 Free standing drive terminal data

Model size	AC terminals	High current DC and braking	Ground terminal
6	2 x M10	2 x M10	2 x M10
7	2 x M10	2 x M10	2 x M10
8		nce holes per phase for	15 N m
9	15 N	allel cables. m (11.1 lb ft) bolt not supplied.	15 N m
	Torque to	olerance	±10%

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

12.1.23 Electromagnetic compatibility (EMC)

This is a summary of the EMC performance of the drive. For full details, refer to the EMC Data Sheet which can be obtained from the supplier of the drive.

Table 12-21 Immunity compliance

Standard	Type of immunity	Test specification	Application	Level
IEC61000-4-2 EN61000-4-2	Electrostatic discharge	6kV contact discharge 8kV air discharge	Module enclosure	Level 3 (industrial)
IEC61000-4-3 EN61000-4-3	Radio frequency radiated field	10V/m prior to modulation 80 - 1000MHz 80% AM (1kHz) modulation	Module enclosure	Level 3 (industrial)
IEC61000-4-4	Fast transient	5/50ns 2kV transient at 5kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)
EN61000-4-4	burst	5/50ns 2kV transient at 5kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)
		Common mode 4kV 1.2/50µs waveshape	AC supply lines: line to ground	Level 4
IEC61000-4-5 EN61000-4-5	Surges	Differential mode 2kV 1.2/50µs waveshape	AC supply lines: line to line	Level 3
		Lines to ground	Signal ports to ground ¹	Level 2
IEC61000-4-6 EN61000-4-6	Conducted radio frequency	10V prior to modulation 0.15 - 80MHz 80% AM (1kHz) modulation	Control and power lines	Level 3 (industrial)
IEC61000-4-11 EN61000-4-11	Voltage dips and interruptions	-30% 10ms +60% 100ms -60% 1s <-95% 5s	AC power ports	
EN50082-1 IEC61000-6-1 EN61000-6-1		ity standard for the nmercial and light - onment		Complies
EN50082-2 IEC61000-6-2 EN61000-6-2	Generic immur industrial envir	nity standard for the onment		Complies
EN61800-3 IEC61800-3 EN61800-3	Product standa speed power d (immunity requ		Meets immunit requirements f second enviror	or first and

See section Surge immunity of control circuits - long cables and connections outside a building on page 62 for control ports for possible requirements regarding grounding and external surge protection

Emission

The drive contains an in-built filter for basic emission control. An additional optional external filter provides further reduction of emission. The requirements of the following standards are met, depending on the motor cable length and switching frequency.

Key (shown in decreasing order of permitted emission level):

- F2R EN 61800-3 second environment, restricted distribution (Additional measures may be required to prevent interference)
- F2U EN 61800-3 second environment, unrestricted distribution

Industrial generic standard EN 50081-2 (EN 61000-6-4) EN 61800-3 first environment restricted distribution (The following caution is required by EN 61800-3)

I

This is a product of the restricted distribution class according to IEC 61800-3. In a residential environment this product may cause radio interference in which case the user may be CAUTION required to take adequate measures.

R Residential generic standard EN 50081-1 (EN 61000-6-3) EN 61800-3 first environment unrestricted distribution

EN 61800-3 defines the following:

- The first environment is one that includes residential premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for residential purposes.
- The second environment is one that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for residential purposes.
- Restricted distribution is defined as a mode of sales distribution in which the manufacturer restricts the supply of equipment to suppliers, customers or users who separately or jointly have technical competence in the EMC requirements of the application of drives

IEC 61800-3:2004 and EN 61800-3:2004

The 2004 revision of the standard uses different terminology to align the requirements of the standard better with the EC EMC Directive.

Power drive systems are categorized C1 to C4:

Category	Definition	Corresponding code used above
C1	Intended for use in the first or second environments	R
C2	Not a plug-in or movable device, and intended for use in the first environment only when installed by a professional, or in the second environment	I
C3	Intended for use in the second environment, not the first environment	E2U
C4	Rated at over 1000V or over 400A, intended for use in complex systems in the second environment	E2R

Note that category 4 is more restrictive than E2R, since the rated current of the PDS must exceed 400A or the supply voltage exceed 1000V, for the complete PDS.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

12.2 Optional external EMC filters

Table 12-22 Size 6 and 7 Free Standing drive EMC filter details

Drive	Epcos						
Dilve	CT part no	Weight					
SP64X1	4200-6815	15 kg (33.0 lb)					
SP64X2	4200-6816	21 kg (46.3 lb)					
SP66X1	4200-6804	21 kg (46.3 lb)					
SP66X2	4200-6804	21 kg (46.3 lb)					
SP74X1	4200-6817	21 kg (46.3 lb)					
SP74X2	4200-6817	21 kg (46.3 lb)					
SP76X1	4200-6804	21 kg (46.3 lb)					
SP76X2	4200-6804	21 kg (46.3 lb)					

Table 12-23 Free standing drive EMC filter details (size 8 and 9)

Drive	Sch	affner	E	ocos
Drive	CT part no.	Weight	CT part no.	Weight
SP84X1	4200-6808	11 kg (25.3 lb)	4200-6801	22 kg (48.5 lb)
SP84X2	4200-6808	11 kg (25.3 lb)	4200-6801	22 kg (48.5 lb)
SP84X3	4200-6808	11 kg (25.3 lb)	4200-6801	22 kg (48.5 lb)
SP84X4	4200-6809	18 kg (39.7 lb)	4200-6802	28 kg (61.7 lb)
SP86X1	4200-6811	10.5 kg (23.1 lb)	4200-6804	21 kg (46.3 lb)
SP86X2	4200-6811	10.5 kg (23.1 lb)	4200-6804	21 kg (46.3 lb)
SP86X3	4200-6812	10.5 kg (23.1 lb)	4200-6805	21 kg (46.3 lb)
SP86X4	4200-6812	10.5 kg (23.1 lb)	4200-6805	21 kg (46.3 lb)
SP94X1	4200-6809	18 kg (39.7 lb)	4200-6802	28 kg (61.7 lb)
SP94X3	4200-6809	18 kg (39.7 lb)	4200-6802	28 kg (61.7 lb)
SP94X4	4200-6810	27 kg (59.5 lb)	4200-6803	34 kg (75.0 lb)
SP94X5	4200-6810	27 kg (59.5 lb)	4200-6803	34 kg (75.0 lb)
SP96X1	4200-6812	10.5 kg (23.1 lb)	4200-6805	21 kg (46.3 lb)
SP96X3	4200-6813	11 kg (25.3 lb)	4200-6806	22 kg (48.5 lb)
SP96X4	4200-6814	18 kg (39.7 lb)	4200-6807	28 kg (61.7 lb)
SP96X5	4200-6814	18 kg (39.7 lb)	4200-6807	28 kg (61.7 lb)

Diagnostics	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started			Optimization	SMARTCARD operation	Onboard PLC		Technical Data	Diagnostics	UL Listing Informatio
-------------	-----------------------	------------------------	----------------------------	----------------------------	--------------------	--	--	--------------	---------------------	----------------	--	-------------------	-------------	--------------------------

13 Diagnostics

The display on the drive gives various information about the status of the drive. These fall into three categories:

- Trip indications
- Alarm indications
- Status indications

Users must not attempt to repair a drive if it is faulty, nor carry out fault diagnosis other than through the use of the diagnostic features described in this chapter. If a drive is faulty, it must be returned to an authorized

WARNING Control Techniques distributor for repair.

13.1 Trip indications

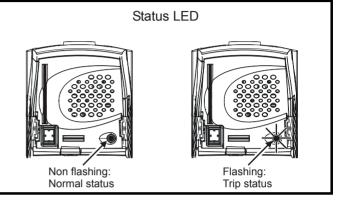
If the drive trips, the output of the drive is disabled so that the drive stops controlling the motor. The upper display indicates that a trip has occurred and the lower display shows the trip. If this is a multi-module drive and a power module has indicated a trip, then the lower display will alternate between the trip string and the module number.

Trips are listed alphabetically in Table 13-1 based on the trip indication shown on the drive display. Refer to Figure 13-1.

If a display is not used, the drive LED Status indicator will flash if the drive has tripped. Refer to Figure 13-2.

The trip indication can be read in Pr **10.20** providing a trip number. Trip numbers are listed in numerical order in Table 13-2 so the trip indication can be cross referenced and then diagnosed using Table 13-1.

Example


- 1. Trip code 3 is read from Pr **10.20** via serial communications.
- 2. Checking Table 13-2 shows Trip 3 is an OI.AC trip.

- 3. Look up OI.AC in Table 13-1.
- 4. Perform checks detailed under Diagnosis.

Figure 13-1 Keyp	ad status modes		
	Status Mode		
Healthy Status	Alarm Status	Trip Status	
			Drive status = tripped Trip type (UU = undervolts)

Figure 13-2 Location of the status LED

Trip	Diagnosis
OI.AC	Instantaneous output over current detected: peak output current greater than 225%
3	Acceleration / deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (closed loop vector and servo modes only) Has offset measurement test been completed? (servo mode only) Reduce the values in current loop gain parameters - Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only)

Safety	Product	Mechanical	Electrical	Getting		Running the	Optimization	SMARTCARD	Onboard	Advanced		Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor		operation	PLC	parameters	Data		Information

Table 13-1 Trip indications

Trip	Diagnosis
br.th	Internal braking resistor thermistor temperature monitoring fail (size 0 only)
10	If no internal brake resistor is installed, set Pr 0.51 (or Pr 10.37) to 8 to disable this trip. If an internal brake resistor is installed: • Ensure that the internal braking resistor thermistor is connected correctly • Ensure that the fan in the drive is working correctly • Replace the internal braking resistor
C.Acc	SMARTCARD trip: SMARTCARD Read / Write fail
185	Check SMARTCARD is installed / located correctly Ensure SMARTCARD is not writing data to data location 500 to 999 Replace SMARTCARD
C.boot	SMARTCARD trip: The menu 0 parameter modification cannot be saved to the SMARTCARD because the necessary file has not been created on the SMARTCARD
177	A write to a menu 0 parameter has been initiated via the keypad with Pr 11.42 set to auto(3) or boot(4), but the necessary file on the SMARTCARD has not bee created Ensure that Pr 11.42 is correctly set and reset the drive to create the necessary file on the SMARTCARD Re-attempt the parameter write to the menu 0 parameter
C.bUSY	SMARTCARD trip: SMARTCARD can not perform the required function as it is being accessed by a Solutions Module
178	Wait for the Solutions Module to finish accessing the SMARTCARD and then re-attempt the required function
C.Chg	SMARTCARD trip: Data location already contains data
179	Erase data in data location Write data to an alternative data location
C.cPr	SMARTCARD trip: The values stored in the drive and the values in the data block on the SMARTCARD are different
188	Press the red 💿 reset button
C.dAt	SMARTCARD trip: Data location specified does not contain any data
183	Ensure data block number is correct
C.Err	SMARTCARD trip: SMARTCARD data is corrupted
182	Ensure the card is located correctly Erase data and retry Replace SMARTCARD
C.Full	SMARTCARD trip: SMARTCARD full
184	Delete a data block or use different SMARTCARD
cL2	Analog input 2 current loss (current mode)
28	Check analog input 2 (terminal 7) current signal is present (4-20mA, 20-4mA)
cL3	Analog input 3 current loss (current mode)
29	Check analog input 3 (terminal 8) current signal is present (4-20mA, 20-4mA)
CL.bit	Trip initiated from the control word (Pr 6.42)
35	Disable the control word by setting Pr 6.43 to 0 or check setting of Pr 6.42
ConF.P	The number of power modules installed no longer matches the value stored in Pr 11.35
	Ensure that all power modules are correctly connected
111	Ensure that all power modules have powered up correctly
	Ensure that the value in Pr 11.35 matches the number of power modules connected
C.OPtn	SMARTCARD trip: Solutions Modules installed are different between source drive and destination drive
180	Ensure correct Solutions Modules are installed Ensure Solutions Modules are in the same Solutions Module slot Press the red i reset button
C.Prod	SMARTCARD trip: The data blocks on the SMARTCARD are not compatible with this product
175	Erase all data on the SMARTCARD by setting Pr xx.00 to 9999 and pressing the red reset button Replace SMARTCARD
C.rdo	SMARTCARD trip: SMARTCARD has the Read Only bit set
181	Enter 9777 in Pr xx.00 to allow SMARTCARD Read / Write access

Safety nformation	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics UL List	
Trip							Diagnos	is					
C.rtg	SMAR	TCARD tri	ip: The vol	tage an	d/or curre	nt rating o	of the sourc	e and destir	nation dr	rives are d	ifferent		
	differe when t V01.09 differe Press	nt voltage a the rating o 9.00 and la nces from o the red ©	and current f the destin ter drive ra default type) reset but	ratings. ation dri ting depe file. ton	Parameter	rs with this ent from th	attribute will le source dr	I not be transive and the fi	sferred to le is a pa	the destin rameter file	ation driv e. Howev	ges with drives of e by SMARTCAF er, with software Ind the file is a	
	Drive r	ating parar											
		Paran					Function						
		2.0			ard ramp v	oltage							
		4.05/6/7, 21.27/8/9 Current limits 4.24 User current maximum scaling											
186							aling						
100		5.07, 2 5.09, 2			rated curre								
		5.09, 2 5.10, 2			rated volta	•							
		5.10, 2			resistance								
		5.17, 2			ning freque								
		5.23, 2	-		je offset	ancy							
		5.24, 2			ient inducta	ance							
		5.25.			inductanc								
		6.0			jection bral	-	nt						
		6.4				-		tection level					
	The at	ove param	neters will h			-							
								141					
С.ТуР				CARD	arameter	set not co	mpatible w	ith drive					
187		the reset b		o io tho d	ama aa th		oromotor fil	a driva tura					
150							arameter file						
dESt		-			-		nation para						
199	Set Pr	xx.00 = 12	2001 check	all visibl	e paramete	ers in the r	menus for du	uplication					
EEF		OM data co 5 comms p		Drive m	ode becor	nes open	loop and s	erial comms	will tim	eout with	remote k	eypad on the dr	
31	This tr	ip can only	be cleared	by load	ing default	parameter	s and savin	g parameters	6				
EnC1	Drive	encoder tr	ip: Encode	er powe	r supply o	verload							
189		encoder pour					requirement 5V						
EnC2	Drive	encoder tr	ip: Wire bi	reak (Dr	ive encode	er termina	ls 1 & 2, 3 a	& 4, 5 & 6)					
190	Check Check Replac	cable cont wiring of fe encoder p ce feedbac	eedback sig ower suppl k device	y is set o	correctly in			-					
								, set Pr 3.40	= 0 to di	sable the E	nc2 trip		
EnC3	Drive	encoder tr	ip: Phase	offset in	correct w	hile runni	ng						
191	Check Check	the encode encoder sl the integrit the offset	hielding ty of the en	coder m	echanical r	nounting							
EnC4	Drive	encoder tr	ip: Feedba	ack devi	ce comms	failure							
192	Ensure Check	Drive encoder trip: Feedback device comms failure Ensure encoder power supply is correct Ensure baud rate is correct Check encoder wiring Replace feedback device											
EnC5		encoder tr		sum or (CRC error								
193	Check Check	the encode	er signal fo er cable sh	r noise ielding		tion 1/				D= 0 44			
	with E	nuat enco	uers, check	the con	ims resolu	uon and/o	carry out th	ne auto-config	guration	Pr 3.41			
	— ·	-											
EnC6		encoder tr	•	er has ir	dicated a	n error							

	information Installation Installation Started parameters motor Optimization Optimiz												
Trip	Diagnosis												
EnC7	Drive encoder trip: Initialisation failed												
195	Re-set the drive Check the correct encoder type is entered into Pr 3.38 Check encoder wiring Check encoder power supply is set correctly Carry out the auto-configuration Pr 3.41 Replace feedback device												
EnC8	Drive encoder trip: Auto configuration on power up has been requested and failed												
196	Change the setting of Pr 3.41 to 0 and manually enter the drive encoder turns (Pr 3.33) and the equivalent number of lines per revolution (Pr 3.34) Check the comms resolution												
EnC9	Drive encoder trip: Position feedback selected is selected from a Solutions Module slot which does not have a speed / position feedback Solutions Module installed												
197	Check setting of Pr 3.26 (or Pr 21.21 if the second motor parameters have been enabled)												
EnC10	Drive encoder trip: Servo mode phasing failure because encoder phase angle (Pr 3.25 or Pr 21.20) is incorrect												
198	Check the encoder wiring. Perform an autotune to measure the encoder phase angle or manually enter the correct phase angle into Pr 3.25 (or Pr 21.20). Spurious Enc10 trips can be seen in very dynamic applications. This trip can be disabled by setting the overspeed threshold in Pr 3.08 to a value greater than zero. Caution should be used in setting the over speed threshold level as a value which is too large may mean that an encoder fault will not be detected.												
Enc11	Drive encoder trip: A failure has occurred during the alignment of the analog signals of a SINCOS encoder with the digital count derived from the sine and cosine waveforms and the comms position (if applicable). This fault is usually due to noise on the sine and cosine signals.												
161	Check encoder cable shield. Examine sine and cosine signals for noise.												
Enc12	Drive encoder trip: Hiperface encoder - The encoder type could not be identified during auto-configuration												
162	Check encoder type can be auto-configured. Check encoder wiring. Enter parameters manually.												
Enc13	Drive encoder trip: EnDat encoder - The number of encoder turns read from the encoder during auto-configuration is not a power of 2												
163	Select a different type of encoder.												
Enc14	Drive encoder trip: EnDat encoder - The number of comms bits defining the encoder position within a turn read from the encoder during auto-configuration is too large.												
164	Select a different type of encoder. Faulty encoder.												
Enc15	Drive encoder trip: The number of periods per revolution calculated from encoder data during auto-configuration is either less than 2 or greater than 50,000.												
165	Linear motor pole pitch / encoder ppr set up is incorrect or out of parameter range i.e. Pr 5.36 = 0 or Pr 21.31 = 0. Faulty encoder.												
Enc16	Drive encoder trip: EnDat encoder - The number of comms bits per period for a linear encoder exceeds 255.												
166	Select a different type of encoder. Faulty encoder.												
Enc17	Drive encoder trip: The periods per revolution obtained during auto-configuration for a rotary SINCOS encoder is not a power of two.												
167	Select a different type of encoder. Faulty encoder.												
ENP.Er	Data error from electronic nameplate stored in selected position feedback device												
176	Replace feedback device												
Et	External trip												
6	Check terminal 31 signal Check value of Pr 10.32 Enter 12001 in Pr xx.00 and check for parameter controlling Pr 10.32 Ensure Pr 10.32 or Pr 10.38 (=6) are not being controlled by serial comms												
HF01	Data processing error: CPU address error												

Safety Information		isting nation
Trip	Diagnosis	
HF02	Data processing error: DMAC address error	
	Hardware fault - return drive to supplier	
HF03	Data processing error: Illegal instruction	
	Hardware fault - return drive to supplier	
HF04	Data processing error: Illegal slot instruction	
	Hardware fault - return drive to supplier	
HF05	Data processing error: Undefined exception	
	Hardware fault - return drive to supplier	
HF06	Data processing error: Reserved exception	
	Hardware fault - return drive to supplier	
HF07	Data processing error: Watchdog failure	
	Hardware fault - return drive to supplier	
HF08	Data processing error: Level 4 crash	
	Hardware fault - return drive to supplier	
HF09	Data processing error: Heap overflow	
	Hardware fault - return drive to supplier	
HF10	Data processing error: Router error	
	Hardware fault - return drive to supplier	
HF11	Data processing error: Access to EEPROM failed	
	Hardware fault - return drive to supplier	
HF12	Data processing error: Main program stack overflow	
	Hardware fault - return drive to supplier	
HF13	Data processing error: Software incompatible with hardware	
	Hardware or software fault - return drive to supplier	
HF17	Multi-module system thermistor short circuit or open circuit	
217	Hardware fault - return drive to supplier	
HF18	Multi-module system interconnect cable error	
218	Hardware fault - return drive to supplier	
HF19	Temperature feedback multiplexing failure	
219	Hardware fault - return drive to supplier	
HF20	Power stage recognition: serial code error	
220	Hardware fault - return drive to supplier	
HF21	Power stage recognition: unrecognised frame size	
221	Hardware fault - return drive to supplier	
HF22	Power stage recognition: multi module frame size mismatch	
222	Hardware fault - return drive to supplier	
HF23	Power stage recognition: multi module voltage or current rating mismatch	
223	Hardware fault - return drive to supplier	
HF24	Power stage recognition: unrecognised drive size	
224	Hardware fault - return drive to supplier	
HF25	Current feedback offset error	
225	Hardware fault - return drive to supplier	
HF26	Soft start relay failed to close, soft start monitor failed or braking IGBT short circuit at power up	
226	Hardware fault - return drive to supplier	
HF27	Power stage thermistor 1 fault	
227	Hardware fault - return drive to supplier	

 rating of the drive Tune the rated speed parameter (closed loop vector only) Check feedback device signal for noise Check the feedback device mechanical coupling It.br Braking resistor overload timed out (l²t) – accumulator value can be seen in Pr 10.39 Ensure the values entered in Pr 10.30 and Pr 10.31 are correct Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 	Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information	
228 Hardware fault - return drive to supplier 1F29 Control Doard thermistor fault 229 Hardware fault - return drive to supplier 1F30 DCCT whore break trip from power module 230 Hardware fault - return drive to supplier 1F31 Internal capacitor bank fan failure or a module has not powered up in a multi-module parallel drive If the AC or DC power supply to all modules in a multi-module parallel drive 231 Check the AC or DC power supply to all modules in a multi-module parallel drive 1F32 Power stage - Identification and trip information serial code error 232 Hardware fault - return drive to the supplier 1LAC Output current overload timed out (f ⁰ 1 - accumulator value can be seen in Pr 4.19 Ensure the motor rated current to not beta to zero Ensure the motor rated current to not beta to zero Ensure the walke eve signal for noise Check the feedback device signal for noise Check the elad evice is being used and the braing resistor and change Pr 10.39 Ensure the values entered in Pr 10.39 and Pr 10.31 and re activatil terminat protection device is being used and the braing resistor and change Pr 10.31 Increase the power rating of the drive is braing used and the braing resistor and change Pr 10.31 In a extemal thermal protecton device is being used and the braing resistor a	Trip							Diagnos	is						
HiF29 Control board thermistor fault 229 Hardware fault - return drive to supplier HiF30 DCCT wire break trip from power module 230 Hardware fault - return drive to supplier HF31 Internal capacitor bank fan failure or a module has not powered up in a multi-module parallel drive (The AC or DC power supply to present, or if this is a single drive, then there is a hardware fault - return drive to the supplier HF31 Internal capacitor bank fan failure or a module has not powered up in a multi-module parallel drive (The AC or DC power supply to present, or thin is a single drive, then there is a hardware fault - return drive to the supplier HF32 Power stage - Identification and trip information serial code error 233 Hardware fault - return drive to the supplier LAC Output current overload timed out (¹ 0) - accumulator value can be seen in Pr 4.19 Ensure the load in one parameter (closed loop vector only) Check the load on the motor has not changed (The enduring an autotune in serve mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is cHeavy Duty rating of the drive rating of the drive rating of the drive rating seistor overload timed out (¹ 1) - accumulator value can be seen in Pr 10.39 Lb7 Braking resistor overload timed out (¹ 2) - accumulator value can be seen in Pr 10.39 Lb7 Braking resistor overload timed out (¹ 2) - accumulator value can be seen in Pr 10.39 L SYncC Drive failiel	HF28	Power	stage the	rmistor 2 f	ault										
229 Hardware fault - return drive to supplier 1830 DCCT wire break trip from power module 230 Hardware fault - return drive to supplier 1831 Internal capacitor bank fan fallure or a module has not powered up in a multi-module parallel drive 1831 Internal capacitor bank fan fallure or a module has not powered up in a multi-module parallel drive 1831 Internal capacitor bank fan fallure or a module has not powered up in a multi-module parallel drive 1842 Power stage - Identification and trip information serial code error 232 Hardware fault - return drive to the supplier 1842 Power stage - Identification and trip information serial code error 232 Hardware fault - return drive to the supplier 1842 Output current overload timed out (²) - accumulator value can be seen in Pr 4.19 20 Ensure the motor rated current is not set to zero 21 Ensure the load is not jammed / sticking 220 Tare that needs seed parallel drive 21 Fasting resistor overload timed out (²) - accumulator value can be seen in Pr 4.19 220 Tare the motor rated current is not set to zero 231 In the kedback device signal for nose 242 Tare the motor rated current is not set to zero </th <th>228</th> <th>Hardwa</th> <th>are fault - r</th> <th>eturn drive</th> <th>to suppl</th> <th>er</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	228	Hardwa	are fault - r	eturn drive	to suppl	er									
HF30 DCCT wire break trip from power module 230 Hardware fault - return drive to supplier HF31 Internal capacitor bank fan failure or a module has not powered up in a multi-module parallel drive 231 Check the AC or DC power supply to all modules in a multi-module parallel drive 11 Herdware fault - return drive to the supplier 1232 Power stage - identification and trip information serial code error 232 Hardware fault - return drive to the supplier 11:AC Output current vovrioad timed out (Pi) - accumulator value can be seen in Pr 4.19 Ensure the motor rated current is not set to zero Ensure the load is not parmed / sticking Check the lead on the motor has not changed 11 seen during an ulotume in service mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is ≤Heavy Duty 20 Trace is deedback device mechanical coupling 11:br Braking resistor overload timed out (²) - accumulator value can be seen in Pr 10.39 12:br Braking resistor overload timed out and the braking resistor software overload is not required, set Pr 10.3 19 Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 11 In an external thermal thermal thorid os and Pr 10.30 and Pr 10.31	HF29	Contro	ol board th	ermistor f	ault										
230 Hardware fault - return drive to supplier HF31 Internal capacitor bank fan failure or a module has not powered up in a multi-module parallel drive 231 Check the AC or DC power supply to all modules in a multi-module parallel drive 11 the AC or DC power supply to present, or if this is a single drive, hen there is a hardware fault - return drive to the supplier 1232 Hardware fault - return drive to the supplier 1242 Output current overload timed out (P1) - accumulator value can be seen in Pr 4.19 230 Ensure the tools not granted fauremation on the set to zero 231 Ensure the tools not granted is not charged 232 There to all not mode to has not charged 233 If seen during an autound is not charged 234 If seen during an subcle drive annet (closed loop vector only) 235 Check the load is not grantelic (closed loop vector only) 236 Take the teablax device mechanical coupling 337 Ensure the values entered in Pr 10.30 and Pr 10.31 are correct 348 Hardware fault - return drive to the supply voltage in Regen mode 338 Refer to the Diagnostics chapter in the Unidrive SP Regen Installation Guide. 349 Prive failed to supply routing to return andee 340 The chand	229	Hardwa	are fault - r	eturn drive	to suppl	er									
HF31 Internal capacitor bank fan failure or a module has not powered up in a multi-module parallel drive 231 If the AC or DC power supply to all modules in a multi-module parallel drive 11 He AC or DC power supply to parall modules in a multi-module parallel drive 11 He AC or DC power supply to parall modules in a multi-module parallel drive 11 He AC or DC power supply to parall modules in a multi-module parallel drive 12 Power stage - Identification and trip information serial code error 232 Hardware fault - return drive to the supplier LLO Output current overload timed out (¹ 2) - accumulator value can be seen in Pr 4.19 Ensure the load is not jammed / slicking Check the load on the motor has not changed 11 Fissen during an autoture in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is ≤Heavy Duly 11 Tune the rated speed parameter (closed loop vector only) 12.0 Check the teadback device sign and change Pr 10.31 are correct 19 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Pr 10.31 to 10 disable the trip 12.5Ync Drive failed to synchronize to the supply voltage in Regen mode 39 Refer to the Diagnostics chapter in the Unidrive SP Regen installation Guide.	HF30	DCCT	wire break	<pre>c trip from</pre>	power n	nodule									
231 Check the AC or DC power supply to all modules in a multi-module parallel drive if the AC or DC power supply is present, or if this is a single drive, then there is a hardware fault - return drive to the supplie if the AC or DC power stage 1 debriftection and trip information serial code error 232 Hardware fault - return drive to the supplier 11AC Output current overload timed out (1 ⁰) - accumulator value can be seen in Pr 4.19 Ensure the load is not parmed / sticking Check the load on the motor has not changed if seen during an autoture in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is ≤Heavy Duty rating of the drive Tune the rated speed parameter (closed loop vector only) Check the feedback device signal for noise Check the feedback device enhancial coupling 11.br Braking resistor overload timed out (1 ²) - accumulator value can be seen in Pr 10.39 19 Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 are correct in loncease the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Pr 10.31 to 10 colaselbe the trip LSYNC Drive failed to synchronize to the supply voltage in Regen mode 39 Refer to the Diagnostics chapter in the Undrive SP Regen Installation Guide. Click enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning corr	230	Hardwa	are fault - r	eturn drive	to suppl	er									
231 If the AC or DC power supply is present, or if this is a single drive, then there is a hardware fault - return drive to the supplier 11232 Hardware fault - return drive to the supplier 11AC Output current overload timed out (⁴ t) - accumulator value can be seen in Pr 4.19 232 Hardware fault - return drive to the supplier 11AC Output current overload timed out (⁴ t) - accumulator value can be seen in Pr 4.19 233 Ensure the load is not jammed / sticking Check the load on the motor has not changed 240 If seen during an autotime in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is <heavy duty<br="">Tune the rated speed parameter (closed loop vector only) Check feedback device ingent for noise Check feedback device mechanical coupling 11b Braking resistor overload timed out (¹t) - accumulator value can be seen in Pr 10.39 219 Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 110 the ackend thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 231 Hefer to the Diagnostics chapter in the Unidrive SP Regen Installation Guide. 0.Ctl Drive control board over temperature 232 Check enclosure / drive fans are still functioning correctly 233 Check enclosure / drive fans are still functioning correctl</heavy>	HF31	Interna	al capacito	or bank far	n failure	or a modi	ule has no	ot powered	up in a multi	-module	parallel d	rive			
232 Hardware fault - return drive to the supplier 1LAC Output current overload timed out (I ²) - accumulator value can be seen in Pr 4.19 Ensure the load is not jammed / sticking Check the load on the motor has not changed 11 Ensure the load on the motor has not changed 20 Tiesen during an autotume in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is 20 Tiesen during an autotume in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is 21 Tiesen during an autotume in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is 20 Tiesen during an autotume in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is 21 The rate for setting per the values entered in Pr 10.30 and Pr 10.31 are correct 21 Therking resistor overload timed out (I ²) - accumulator value can be seen in Pr 10.31 21 The values entered in Pr 10.30 and Pr 10.31 are correct 22 The values entered in Pr 10.30 and Pr 10.31 and the raking resistor software overload is not required, set Pr 10.3 23 Refer to the Diagnostics chapter in the Unitarity EP Regen Installation Guide. 33 Refer to the Diagnostics chapter in the Unitarity EP Regen Installation Guide. 34 Check enclosure ventilianin paths <td< th=""><th>231</th><th>If the A</th><th>C or DC po</th><th>ower suppl</th><th>y is pres</th><th>ent, or if th</th><th>nis is a sing</th><th>gle drive, the</th><th>en there is a h</th><th>nardware</th><th>fault - retu</th><th>rn drive t</th><th>o the supp</th><th>lier</th></td<>	231	If the A	C or DC po	ower suppl	y is pres	ent, or if th	nis is a sing	gle drive, the	en there is a h	nardware	fault - retu	rn drive t	o the supp	lier	
ItAC Output current overload timed out (I²t) - accumulator value can be seen in Pr 4.19 Ensure the motor rated current is not set to zero Ensure the load is not jammed / sticking Check the load on the motor has not changed If seen during an autotune in serve mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is ⊲Heavy Duty rating of the drive 20 If seen during an autotune in serve mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is ⊲Heavy Duty rating of the drive 21 Tune the rated speed parameter (closed loop vector only) Check feedback device signal for noise Check the feedback device mechanical coupling 19 Ensure the values entered in Pr 10.30 and Pr 10.31 are correct increase the power rating of the driving resistor and change Pr 10.30 and Pr 10.310 19 Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 19 Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 19 Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 11 Increase the order scatcharter to the Unidrive SP Regen Installation Guide. 0.11 Drive control board over temperature Check enclosure / drive fars are still functioning correctly Check enclosure / drive fars are still functioning correctly 21 Decrease acceleration / deceleration rates	HF32	Power	Power stage - Identification and trip information serial code error												
Ensure the motor rated current is not set to zero Ensure the motor rated current is not set to zero Ensure the motor rated current is not set to zero Ensure the motor rated current is not set to zero Ensure the motor rated current is not set to zero Ensure the motor rated current is not set to zero Ensure the motor rated current is not set to zero Ensure the value of motors Ture the rated speed parameter (closed loop vector only) Check the set set of motors Check the set set of motors Check the set set of motors Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If are set me values entered in Pr 10.30 and Pr 10.31 are correct Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 9 Refer to the Diagnostics chapter in the Unidrive SP Regen Installation Guide. 0.CLL Drive control board over temperature Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly	232	Hardwa	Hardware fault - return drive to the supplier												
Ensure the load is not jammed / sticking Check the load on the motor has not changed If seen during an audoture in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is sHeavy Duty rating of the drive Turne the rated speed parameter (closed loop vector only) Check the feedback device mechanical coupling Ensure the values entered in Pr 10.30 and Pr 10.31 are correct Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Pr 10.31 to 0 to disable the trip LSYNC Drive failed to synchronize to the supply voltage in Regen mode 39 Refer to the Diagnostics chapter in the Unidrive SP Regen Installation Guide. 0.CiL Drive control hoard over temperature Check enclosure door filters Check enclosure door filters Check enclosure door filters Check enclosure door filters Check enclosure door filters Check enclosure door filters Check enclosure door liters Check enclosure door filters Check enclosure door filters Check enclosure door filters Check enclosure door liters Check enclosure door liters Reduce dive switching frequency Reduce dive switching frequency Reduce dive switching frequency <t< th=""><th>It.AC</th><th>Output</th><th>t current o</th><th>overload ti</th><th>med out</th><th>(l²t) - acc</th><th>umulator</th><th>value can l</th><th>be seen in Pr</th><th>[.] 4.19</th><th></th><th></th><th></th><th></th></t<>	It.AC	Output	t current o	overload ti	med out	(l ² t) - acc	umulator	value can l	be seen in Pr	[.] 4.19					
Increase the yolues entered in Pr 10.30 and Pr 10.31 are correct Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Is if an external thermal protection device is being used and the braking resistor software overload is not required. Is if an external thermal protection protection protection device over temperature based on thermal model Reduce druly cycle	20	Ensure Check If seen rating c Tune th Check	Ensure the load is not jammed / sticking Check the load on the motor has not changed If seen during an autotune in servo mode, ensure that the motor rated current Pr 0.46 (Pr 5.07) or Pr 21.07 is ≤Heavy Duty current rating of the drive Tune the rated speed parameter (closed loop vector only) Check feedback device signal for noise												
19 Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.3 Pr 10.31 to 0 to disable the trip L:SYnC Drive failed to synchronize to the supply voltage in Regen mode 33 Refer to the Diagnostics chapter in the Unidrive SP Regen Installation Guide. O.CtL Drive control board over temperature Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths 23 Check enclosure ventilation paths Check andient temperature Reduce drive switching frequency O.ht1 Power device over temperature based on thermal model Reduce drive switching frequency 21 Reduce drive switching frequency 21 Reduce drive switching frequency 22 Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths 22 Increase ventilation 23 Check enclosure / drive fans are still functioning correctly Check enclosure dori flers 24 Increase ventilation 25 Increase ventilation 26 Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching fr	lt.br	Brakin	g resistor	overload	timed ou	ıt (l ² t) – a	ccumulato	or value car	n be seen in	Pr 10.39					
39 Refer to the Diagnostics chapter in the Unidrive SP Regen Installation Guide. O.GL Drive control board over temperature Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths 23 Check enclosure door filters Check ambient temperature Reduce drive switching frequency O.ht1 Power device over temperature based on thermal model Reduce drive switching frequency Reduce drive switching frequency 21 Reduce drive switching frequency Reduce motor load Decrease acceleration / deceleration rates Reduce motor load Decrease acceleration / deceleration gorrectly Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure / drive fans are still functioning correctly Check enclosure wentilation paths Check enclosure / drive fans are still functioning correctly Check enclosure wentilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching frequency Reduce drive switching frequency<	19	Increas If an ex	Ensure the values entered in Pr 10.30 and Pr 10.31 are correct Increase the power rating of the braking resistor and change Pr 10.30 and Pr 10.31 If an external thermal protection device is being used and the braking resistor software overload is not required, set Pr 10.30 or												
O.CiL Drive control board over temperature Check enclosure / drive fans are still functioning correctly Check enclosure wentilation paths 23 Check enclosure door filters Check ambient temperature Reduce drive switching frequency O.ht1 Power device over temperature based on thermal model Reduce drive switching frequency Reduce motor load O.ht2 Heatsink over temperature Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce drive switching frequency <	L.SYnC	Drive f	ailed to sy	nchronize	e to the s	supply vo	Itage in R	egen mode							
23 Check enclosure / drive fans are still functioning correctly Check enclosure door filters Check ambient temperature Reduce drive switching frequency 21 Power device over temperature based on thermal model 21 Reduce drive switching frequency Reduce drive switching frequency 21 Reduce drive switching frequency Reduce drive switching frequency 21 Reduce drive switching frequency Reduce motor load 0.ht2 Heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce motor load 0ht2.P Power module heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure ventilation Decrease ventilation 105 Increase ventilation paths Check enclosure dori filters Increase ventilation					•		e SP Rege	n Installatio	n Guide.						
Reduce drive switching frequency O.ht1 Power device over temperature based on thermal model Reduce drive switching frequency Reduce duty cycle Decrease acceleration / deceleration rates Reduce motor load O.ht2 Heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce duty cycle Reduce motor load Oht2.P Power module heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure dori filters Increase ventilation Increase ventilation </th <th></th> <th>Check Check</th> <th>enclosure enclosure</th> <th>/ drive fans ventilation</th> <th>are still paths</th> <th></th> <th>g correctly</th> <th>,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		Check Check	enclosure enclosure	/ drive fans ventilation	are still paths		g correctly	,							
21 Reduce drive switching frequency Reduce duty cycle Decrease acceleration / deceleration rates Reduce motor load 0.ht2 Heatsink over temperature 2 Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce drive switching frequency Reduce duty cycle Reduce motor load 0ht2.P Power module heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation					uency										
21 Reduce duty cycle Decrease acceleration / deceleration rates Reduce motor load 0.ht2 Heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce duty cycle Reduce duty cycle Reduce motor load Oht2.P Power module heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure ventilation paths Check enclosure ventilation paths Check enclosure ventilation	O.ht1					sed on th	ermal mo	del							
22 Check enclosure / drive fans are still functioning correctly 22 Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load Oht2.P Power module heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure ventilation paths Increase ventilation Increase ventilation	21	Reduce Decrea	e duty cycle ise acceler	e ation / dec		rates									
22 Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load Oht2.P Power module heatsink over temperature Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure ventilation paths Check enclosure door filters Increase ventilation	O.ht2			•											
Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation	22	Check Check Increas Decrea Reduce Reduce	enclosure enclosure se ventilationse acceler e drive swit e duty cyclo	ventilation door filters on ration / dec tching freque e	paths eleration		g correctly								
Check enclosure ventilation paths Check enclosure door filters Increase ventilation	Oht2.P				-										
Reduce drive switching frequency Reduce duty cycle Reduce motor load	105	Check Check Increas Decrea Reduce Reduce	enclosure enclosure se ventilationse acceler e drive swift e duty cyclo	ventilation door filters on ration / dec tching freque e	paths eleration		g correctly								

Safety Information Product information Mechanical Installation Electrical Installation Getting Started Basic parameters Runningthe motor Optin	mization SMARTCARD Onboard PLC PLC parameters Data Diagnostics Information
---	--

Trip	Diagnosis
O.ht3	Drive over-temperature based on thermal model
27	The drive will attempt to stop the motor before tripping. If the motor does not stop in 10s the drive trips immediately. Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce duty cycle Reduce motor load
Oht4.P	Power module rectifier over temperature or input snubber resistor over temperature (size 4 and above)
102	Check for supply imbalance Check for supply disturbance such as notching from a DC drive Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Decrease acceleration / deceleration rates Reduce drive switching frequency Reduce duty cycle Reduce motor load
OI.AC	Instantaneous output over current detected: peak output current greater than 222%
3	Acceleration /deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (closed loop vector and servo modes only) Has offset measurement test been completed? (servo mode only) Reduce the values in current loop gain parameters – Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only)
OIAC.P	Power module over current detected from the module output currents
104	Acceleration /deceleration rate is too short. If seen during autotune reduce voltage boost Pr 5.15 Check for short circuit on output cabling Check integrity of motor insulation Check feedback device wiring Check feedback device mechanical coupling Check feedback signals are free from noise Is motor cable length within limits for that frame size? Reduce the values in speed loop gain parameters – Pr 3.10 , Pr 3.11 and Pr 3.12 (closed loop vector and servo modes only) Has offset measurement test been completed? (servo mode only) Reduce the values in current loop gain parameters – Pr 4.13 and Pr 4.14 (closed loop vector and servo modes only)
Ol.br	Braking transistor over-current detected: short circuit protection for the braking transistor activated
4	Check braking resistor wiring Check braking resistor value is greater than or equal to the minimum resistance value Check braking resistor insulation
Olbr.P	Power module braking IGBT over current
103	Check braking resistor wiring Check braking resistor value is greater than or equal to the minimum resistance value Check braking resistor insulation
OldC.P	Power module over current detected from IGBT on state voltage monitoring
109	Vce IGBT protection activated. Check motor and cable insulation.
O.Ld1	Digital output overload: total current drawn from 24V supply and digital outputs exceeds 200mA
26	Check total load on digital outputs (terminals 24,25,26)and +24V rail (terminal 22)
O.SPd	Motor speed has exceeded the over speed threshold
7	Increase the over speed trip threshold in Pr 3.08 (closed loop vector and servo modes only) Speed has exceeded 1.2 x Pr 1.06 or Pr 1.07 (open loop mode) Reduce the speed loop P gain (Pr 3.10) to reduce the speed overshoot (closed loop vector and servo modes only)

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Trip							Diagnos	sis					
ov	DC bu	is voltage l	has excee	ded the	peak leve	l or the m	aximum co	ntinuous lev	el for 15	seconds			
2	Decre Check Check by DC Check	drives motor insu	resistor va C supply le disturbanc lation	alue (stay evel	ying above	se the DC	bus to rise -	- voltage ove			ecovery 1	from a notcl	h induced
		voltage rat 200 400 575 690 drive is oper	-	eak volt 415 830 990 1190 w voltage	-		4 8 9 11	is voltage le 10 15 070 75 evel is 1.45 x					
OV.P	Powe	r module D	C bus vol	tage has	exceede	d the peal	c level or th	e maximum	continue	ous level f	or 15 se	conds	
106	Decre Check Check by DC Check Drive	drives motor insu voltage rat 200 400 575 690	resistor va C supply le disturbanc lation ting P	alue (stay evel es which Peak volt 415 830 990 1190	ying above could cau age	se the DC Maximun	bus to rise - n continuou 4 8 9 11	- voltage ove IS voltage le 10 15 170 75 evel is 1.45 x	vel (15s)		ecovery 1	from a notcl	h induced
PAd	Кеура	ad has beer	n removed	d when t	he drive i	s receivin	g the speed	l reference f	rom the l	keypad			
34		keypad and ge speed re		lector to	select spe	ed referen	ce from ano	ther source					
PH	AC vo	oltage input	t phase lo	ss or lar	ge supply	imbalanc	e detected						
32	Check NOTE Load I	e all three p input volta evel must b this trip is i	ge levels a e between	ire correc	ct (at full lo	ad)	trip under p	bhase loss co	nditions.	The drive v	will attem	pt to stop tł	he motor
PH.P	Powe	r module p	hase loss	detectio	on								
107		e all three p input volta											
PS	Intern	al power s	upply faul	t									
5	Hardw	ve any Solu /are fault - r	eturn drive	to suppl	ier								
PS.10V		ser power		rrent gre	eater than	10mA							
8		t wiring to te be load on te											
PS.24V	24V ir	nternal pow	ver supply	overloa	d								
9	The us Univer • Re • Pr		nsists of the er Plus enc and reset eternal 24V	e drive's oder sup ′ >50W p	digital out ply. ower supp	outs, the S		the internal 2 digital outputs				upply and th	he SM-
PS.P		r module p											
108	Remo	ve any Solu /are fault - r	itions Mod	ules and									
PSAVE.E	r Powe	r down sav	e paramet	ters in th	ne EEPRO	M are cor	rupt						
37	The dr Perfor	rive will reve	ert back to ive (Pr xx.0	the powe 00 to 100	er down pa 0 or 1001	arameter s	et that was I	neters were b ast saved sup power down	ccessfully	/.	ensure t	his trip doe	s or occur

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Trip	Diagnosis
rS	Failure to measure resistance during autotune or when starting in open loop vector mode 0 or 3
33	Check motor power connection continuity
SAVE.Er	User save parameters in the EEPROM are corrupt
36	Indicates that the power was removed when user parameters were being saved. The drive will revert back to the user parameter set that was last saved successfully. Perform a user save (Pr xx.00 to 1000 or 1001 and reset the drive) to ensure this trip does or occur the next time the drive is powered up.
SCL	Drive RS485 serial comms loss to remote keypad
30	Reinstall the cable between the drive and keypad Check cable for damage Replace cable Replace keypad
SLX.dF	Solutions Module slot X trip: Solutions Module type installed in slot X changed
204,209,214	Save parameters and reset

Tain			DI.										
Trip			Diagno										
SLX.Er	Solutions Module slot X trip: Solutions Module in slot X has detected a fault Feedback module category												
	Check value	in Pr 15/16/17.50 . SM-Encoder Plus a		error codes for the SM-Universal Encoder Plus, SM-Encoder section in the relevant Solutions Module User Guide for more									
	Error code	Module	Trip Description	Diagnostic									
	0	All	No trip	No fault detected									
	1	SM-Universal Encoder Plus & SM-Encoder Output Plus	Encoder power supply overload	Check encoder power supply wiring and encoder current requirement Maximum current = 200mA @ 15V, or 300mA @ 8V and 5V									
		SM-Resolver	Excitation output short circuit	Check the excitation output wiring.									
	2	SM-Universal Encoder Plus & SM-Resolver	Wire break	Check cable continuity Check wiring of feedback signals is correct Check supply voltage or excitation output level Replace feedback device									
	3	SM-Universal Encoder Plus	Phase offset incorrect while running	Check the encoder signal for noise Check encoder shielding Check the integrity of the encoder mechanical mounting Repeat the offset measurement test									
	4	SM-Universal Encoder Plus	Feedback device communications failure	Ensure encoder power supply is correct Ensure baud rate is correct Check encoder wiring Replace feedback device									
	5	SM-Liniversal Check the encoder signal for noise											
	6	SM-Universal	Encoder has indicated an error	Replace encoder									
	0	Encoder Plus	Plus										
	7	SM-Universal Encoder Plus	Initialisation failed	Check the correct encoder type is entered into Pr 15/16/17.15 Check encoder wiring Check supply voltage level Replace feedback device									
202,207,212	8	SM-Universal Encoder Plus	Auto configuration on power up has been requested and failed	Change the setting of Pr 15/16/17.18 and manually enter the number of turns bits (Pr 15/16/17.09) and the equivalent number of lines per revolution (Pr 15/16/17.10) and the single turn comms bits (Pr 15/16/17.11)									
	9	SM-Universal Encoder Plus	Motor thermistor trip										
	10	SM-Universal Encoder Plus	Motor thermistor short circuit	Check motor thermistor wiring Replace motor / motor thermistor									
	11	SM-Universal Encoder Plus	Failure of the sincos analog position alignment during encoder initialisation	Check encoder cable shield. Examine sine and cosine signals for noise.									
		SM-Resolver	Poles not compatible with motor	Check that the correct number of resolver poles has been set in Pr 15/16/17.15 .									
	12	SM-Universal Encoder Plus	Encoder type could not be identified during auto-configuration	Check encoder type can be auto-configured. Check encoder wiring. Enter parameters manually.									
	13	SM-Universal Encoder Plus	Number of encoder turns read from the encoder during auto- configuration is not a power of 2	Select a different type of encoder.									
	14	SM-Universal Encoder Plus	Number of comms bits defining the encoder position within a turn read from the encoder during auto- configuration is too large.	Select a different type of encoder. Faulty encoder.									
	15	SM-Universal Encoder Plus	The number of periods per revolution calculated from encoder data during auto-configuration is either <2 or >50,000.	Linear motor pole pitch / encoder ppr set up is incorrect or out of parameter range i.e. Pr 5.36 = 0 or Pr 21.31 = 0. Faulty encoder.									
	16	SM-Universal Encoder Plus	The number of comms bits per period for a linear encoder exceeds 255.	Select a different type of encoder. Faulty encoder.									
	74	All	Solutions Module has overheated	Check ambient temperature Check enclosure ventilation									
	L		1										

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Trip							Diagnos	sis					
SLX.Er	Solut	ions Modu	le slot X tr	ip: Solu	tions Mod	ule in slo	t X has dete	ected a fault					
	Autor	nation (Ap	plications)	module	category								
								error codes fo			ons and S	M-Applicat	ions Lite.
	See th	ne <i>Diagnos</i> i	tics section	in the re	levant Sol	utions Mod	dule User G	uide for more	informat	ion.			
	Erre	or Code				Trip Desc	ription						
			User progr										
		40	Unknown e			ct supplier	•						
		41	Parameter										
			Attempt to		-	-							
			Attempt to Parameter			only param	eter						
			Invalid syn		-	2							
		46	Unused	cinonisa	tion modes	5							
		48	RS485 not	in user i	node								
			Invalid RS4										
			Maths erro		-	r overflow							
		51	Array index	k out of r	ange								
		52	Control wo	rd user t	rip								
			DPL progra	am incon	npatible wi	th target							
		54	DPL task o	verrun									
		55	Unused		<u> </u>								
			Invalid time		-								
		57 58	Function b Flash PLC										
			Drive rejec	-	-	dule as Sv	nc master						
202,207,21	2		-			-	your supplie	er					
202,207,2			CTNet inva				7	-					
		62	CTNet inva		-								
		63	CTNet inva										
			Digital Out										
			Invalid fund			ter(s)							
			User heap			()							
		67	RAM file de	pes not e	exist or a n	on-RAM fi	le id has be	en specified					
		68	The RAM f	ile speci	fied is not a	associated	l to an array						
		69	Failed to u	pdate dri	ve parame	eter databa	ase cache in	Flash memo	ry				
		70	User progr	am dowr	nloaded wh	nile drive e	nabled						
		71	Failed to cl	hange dr	ive mode								
		72	Invalid CTI	Vet buffe	r operatior	ı							
		73	Fast param	neter initi	alisation fa	ailure							
		74	Over-temp	erature									
		75	Hardware	unavailal	ole								
		76	Module typ	e canno	t be resolv	ed. Modul	e is not reco	gnised.					
		77	Inter-option	n module	comms e	rror with m	odule in slo	t 1					
1		78	Inter-option	n module	comms e	rror with m	odule in slo	t 2					
1		79	Inter-optior	n module	comms e	rror with m	odule in slo	t 3					
		80	Inter-optior	n module	comms e	rror with m	odule unkno	own slot					
		81	APC intern	al error									
1		82	Communic	ations to	drive fault	y							

Safety Information in	Product nformation	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information		
Trip							Diagno	sis							
SLX.Er	Soluti	ons Modul	e slot X tr	ip: Solut	tions Mod	ule in slot	-	ected a fault							
	Check I/O PE		15/16/17. 120V, SM	, 50. The f	ollowing ta	ble lists th		error codes for he <i>Diagnostic</i>							
	Erro	r code		Мо	dule				Reas	son for fau	ılt				
		0			All		No err	ors							
		1			All		Digital	output overlo	ad						
202,207,212		2	SM	-I/O Lite,	SM-I/O Ti	mer	Analog	input 1 curre	nt input to	oo high (>2	2mA) or	too low (<3	mA)		
		2			1-1/O 24V I		-	input overloa							
		3			1-1/O 24V I			j input 1 curre		too low (<3	mA)				
			S	-	V Protecte	ed		unications err	-						
		4			O PELV			ower supply a							
		5			O Timer			me clock com		on error					
	· · · ·	74			All		Modul	e over temper	ature						
SLX.Er	Soluti	ons Modul	e slot X tr	ip: Solut	tions Mod	ule in slot	X has det	ected a fault							
	Check		· 15/16/17.		•		e possible nore inform	error codes fo ation.	r the Fiel	ldbus modi	ules. See	e the <i>Diagn</i>	ostics		
	Erro	r code		Mo	dule				Trip	Descriptio	on				
		0			All		No trip								
		1			therCAT			dbus mode ha		selected					
		2			therCAT		Critica	task over-rur	ו						
	Ę	52			DP, SM-IN t, SM-CAN		User c	ontrol word tri	р						
	ţ	58		-	-LON		Incorre	ect non-volatile	e storage	;					
	6	61	SM-D	eviceNet	DP, SM-IN , SM-CAN OS, SM-LO	Open,	Config	Configuration error							
	6	62		SM-E	therCAT		Databa	ase initializatio							
		63			therCAT		-	stem initializa							
	6	64		-	eviceNet		Expec	ed packet rat	e timeou	t					
	6	65	SM-D SN	eviceNet /I-SERC	DP, SM-IN , SM-CAN DS, SM-LO	Open, DN	Netwo	Network loss							
202,207,212		66			FIBUS-DF			link failure							
			SM-CAN, S			•									
	6	69			SM-EtherC			nowledgeme	nt						
	1	70	• •		ernet and et, SM-LC	SM-LON)		ransfer error	e veile ble	f	dula fra				
		74	51		All	NN		ns module ov			baule from	n the drive			
		75	SM		, SM-Ethei	CAT		ive is not resp		erature					
		76			, SM-Ether			odbus connec		timed out					
		30			SM-SERC			ption commur							
		31		• •	SM-SERC			unications err							
		32		• •	SM-SERC			unications err							
		33			SM-SERC	-		unications err							
		34			, SM-Ether			y allocation e							
		35			, SM-Ethei			stem error							
	-	36			SM-Ether		-	uration file err	or						
		30 37			thernet		Language file error								
	-	97			thernet		-	event over-ru	n						
	-	98			All			I watchdog er							
		99			All			I software err							
	<u> </u>														

	product Mechanica prmation Installation		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics UL Listing Information	
Trip						Diagnos	sis					
SLX.Er	Solutions Modu	ile slot X tr	ip: Solu	tions Mod	dule in slo	t X has dete	ected a fault					
	SLM module ca Check value in F <i>SM-SLM User G</i>	Pr 15/16/17.		-	able lists th	e possible e	error codes fo	r the SM-	-SLM. See	the <i>Diag</i>	nostics section in the	
	Error Code				Trip Des	cription						
	0	No fault det	ected									
		Power supp										
		SLM versio		ow								
		DriveLink e										
		Incorrect sv Feedback s	-									
		Encoder er			conect							
		Motor object	-	r of instar	ces error							
202,207,212		Motor object										
202,207,212	9	Performanc	e object	number o	of instances	error						
	10	Parameter	channel	error								
		Drive opera	0									
		Error writing	-		ROM							
		Motor object										
		Unidrive SF										
		15 Encoder object CRC error 16 Motor object CRC error										
		,										
		Unidrive SP object CRC error										
	19	Sequencer timeout										
	74	4 Solutions module over temperature										
SLX.HF	Solutions Modu	ile slot X tr	ip: Solu	tions Moo	dule X har	dware fault						
200,205,210	Ensure Solutions Return Solutions			correctly								
SLX.nF	Solutions Modu			tions Mo	dule has b	een remove	d					
203,208,213	Ensure Solutions Reinstall Solutio Save parameters	ns Module		correctly								
SL.rtd	Solutions Modu			has cha	nged and	Solutions N	lodule paran	neter rou	iting is no	w incorr	rect	
215	Press reset. If the trip persist				-				0			
SLX.tO	Solutions Modu					dog timeou	ıt					
201,206,211	Press reset. If the trip persists		· · · ·									
t038	User defined tri	pUser trip	defined	in 2 nd pro	ocessor So	olutions Mo	dule code					
38	SM-Applications	program m	ust be in	terrogated	d to find the	e cause of th	is trip					
t040 to t089	User defined tri	pUser trip	defined	in 2 nd pro	ocessor So	olutions Mo	dule code					
40 to 89	SM-Applications	program m	ust be in	terrogated	d to find the	e cause of th	is trip					
t099	User defined tripUser trip defined in 2 nd processor Solutions Module code											
99	SM-Applications program must be interrogated to find the cause of this trip											
t101	User defined tripUser trip defined in 2 nd processor Solutions Module code											
101	SM-Applications			-								
t112 to t160	User defined tri											
112 to 160	SM-Applications											
t168 to t174	User defined tri			-								
168 to 174	SM-Applications	program m	ust be in	terrogated	d to find the	e cause of th	is trip					

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
Trip							Diagnos	is					
t216	User	defined trip	User trip	defined	in 2 nd pro	cessor So	olutions Mo	dule code					
216	SM-A	pplications p	program m	ust be in	errogated	to find the	cause of th	is trip					
th	Motor	thermisto	r trip										
24	Check	Check motor temperature Check thermistor continuity Set Pr 7.15 = VOLt and reset the drive to disable this function											
thS	Motor	thermisto	r short cir	cuit									
25	Repla	Check motor thermistor wiring Replace motor / motor thermistor Set Pr 7.15 = VOLt and reset the drive to disable this function											
tunE*	Autot	une stoppe	ed before o	completi	on								
18	The re The S		has been p UE OFF (S	oressed of SECURE	luring the DISABLE	i) signal (te		vas active du	-				
tunE1*	-				-		ed could n	ot be reache	ed during	g the inerti	a test (s	ee Pr 5.12)
11	Ensur Check	e the motor e Pr 3.26 ar (feedback o (encoder co	nd Pr 3.38 device wirir	are set c ng is corr	orrectly	released							
tunE2*	Positi	on feedbad	ck directio	n incorr	ect or mo	tor could	not be stop	ped during	the inert	ia test (see	e Pr 5.12)	
12	Check	Check motor cable wiring is correct Check feedback device wiring is correct Swap any two motor phases											
tunE3*	Drive	Drive encoder commutation signals connected incorrectly or measured inertia out of range (see Pr 5.12)											
13		Check motor cable wiring is correct Check feedback device U,V and W commutation signal wiring is correct											
tunE4*	Drive	Drive encoder U commutation signal fail during an autotune											
14	Repla	Check feedback device U phase commutation wires continuity Replace encoder											
tunE5*		encoder V											
15		c feedback o ce encoder	device V pr	nase com	imutation	wires cont	nuity						
tunE6*	Drive	encoder W	/ commuta	tion sig	nal fail du	iring an a	utotune						
16		c feedback o ce encoder	device W p	hase cor	nmutation	wires con	tinuity						
tunE7*	Motor	r number o	f poles set	t incorre	ctly								
17	Check	t lines per re the numbe	er of poles i	n Pr 5.11		rectly							
Unid.P		r module u											
110	Ensur	all intercor	e routed av	vay from	electrical	noise sour	ces						
UP ACC			•				program fil	e on drive					
98	Anoth	er source is	already ad	ccessing	Onboard I	PLC progr	is enabled am - retry or	nce other acti	on is con	nplete			
UP div0		ard PLC pr	ogram atte	empted	aivide by	zero							
90		Check program											
UP OFL		Onboard PLC program variables and function block calls using more than the allowed RAM space (stack overflow)									w)		
95		c program					- 4						
UP ovr		ard PLC pr	ogram atte	empted	out of ran	ge param	eter write						
94		c program											
UP PAr		•	ogram atte	empted	access to	a non-ex	istent parar	neter					
91		Check program Onboard PLC program attempted write to a read-only parameter											
UP ro			ogram atte	empted	write to a	read-only	parameter						
92	Check	c program											

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	---------------------	----------------------------	----------------------------	--------------------	---------------------	-------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

Trip		Diagnosis						
UP So	Onboard PLC program attemp	ted read of a write-only paramete	er					
93	Check program							
UP udF	Onboard PLC program un-defi	ned trip						
97	Check program	Check program						
UP uSEr	Onboard PLC program requested a trip							
96	Check program							
UV	DC bus under voltage thresho	ld reached						
1	Check AC supply voltage level Drive voltage rating (Vac) 200 400 575 & 690	Under voltage threshold (Vdc) 175 330 435	UV reset voltage (Vdc) 215V 425V 590V					

*If a tunE through tunE 7 trip occurs, then after the drive is reset the drive cannot be made to run unless it is disabled via the SAFE TORQUE OFF (SECURE DISABLE) input (terminal 31), drive enable parameter (Pr 6.15) or the control word (Pr 6.42 and Pr 6.43).

Table 13-2 Serial communications look-up table

No.	Trip	No.	Trip	No.	Trip
1	UV	40 to 89	t040 to t089	182	C.Err
2	OV	90	UP div0	183	C.dAt
3	OI.AC	91	UP PAr	184	C.FULL
4	Ol.br	92	UP ro	185	C.Acc
5	PS	93	UP So	186	C.rtg
6	Et	94	UP ovr	187	C.TyP
7	O.SPd	95	UP OFL	188	C.cPr
8	PS.10V	96	UP uSEr	189	EnC1
9	PS.24V	97	UP udF	190	EnC2
10	br.th	98	UP ACC	191	EnC3
11	tunE1	99	t099	192	EnC4
12	tunE2	100		193	EnC5
13	tunE3	101	t101	194	EnC6
14	tunE4	102	Oht4.P	195	EnC7
15	tunE5	103	Olbr.P	196	EnC8
16	tunE6	104	OIAC.P	197	EnC9
17	tunE7	105	Oht2.P	198	EnC10
18	tunE	106	OV.P	199	DESt
19	lt.br	107	PH.P	200	SL1.HF
20	It.AC	108	PS.P	201	SL1.tO
21	O.ht1	109	OldC.P	202	SL1.Er
22	O.ht2	110	Unid.P	203	SL1.nF
23	O.CtL	111	ConF.P	204	SL1.dF
24	th	112 to 160	t112 to t160	205	SL2.HF
25	thS	161	Enc11	206	SL2.tO
26	O.Ld1	162	Enc12	207	SL2.Er
27	O.ht3	163	Enc13	208	SL2.nF
28	cL2	164	Enc14	209	SL2.dF
29	cL3	165	Enc15	210	SL3.HF
30	SCL	166	Enc16	211	SL3.tO
31	EEF	167	Enc17	212	SL3.Er
32	PH	168 to 174	t168 to t174	213	SL3.nF
33	rS	175	C.Prod	214	SL3.dF
34	PAd	176	EnP.Er	215	SL.rtd
35	CL.bit	177	C.boot	216	t216
36	SAVE.Er	178	C.bUSY	217 to 232	HF17 to HF32
37	PSAVE.Er	179	C.Chg		
38	t038	180	C.OPtn		
39	L.SYnC	180	C.RdO		

Safet	 Mechanical Installation		Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
monna	motanation	motaliation	otuntou	parametero	motor		operation	1 20	parametero	Dulu		internation

The trips can be grouped into the following categories. It should be noted that a trip can only occur when the drive is not tripped or is already tripped but with a trip with a lower priority number.

Table 13-3 Trip categories

Priority	Category	Trips	Comments
1	Hardware faults	HF01 to HF16	These indicate serious internal problems and cannot be reset. The drive is inactive after one of these trips and the display shows HFxx . The Drive OK relay opens and the serial comms will not function.
2	Non-resetable trips	HF17 to HF32, SL1.HF, SL2.HF, SL3.HF	Cannot be reset. Requires the drive to be powered down.
3	EEF trip	EEF	Cannot be reset unless a code to load defaults is first entered in Pr xx.00 or Pr 11.43.
4	SMARTCARD trips	C.boot, C.Busy, C.Chg, C.OPtn, C.RdO, C.Err, C.dat, C.FULL, C.Acc, C.rtg, C.TyP, C.cpr, C.Prod	Can be reset after 1.0s SMARTCARD trips have priority 5 during power-up
4	Encoder power supply trips	PS.24V, EnC1	Can be reset after 1.0s These trips can only override the following priority 5 trips: EnC2 to EnC8 or Enc11 to Enc17
5	Autotune	tunE, tunE1 to tunE7	Can be reset after 1.0s, but the drive cannot be made to run unless it is disabled via the SAFE TORQUE OFF (SECURE DISABLE) input (terminal 31), <i>Drive enable</i> (Pr 6.15) or the <i>Control word</i> (Pr 6.42 and Pr 6.43).
5	Normal trips with extended reset	OI.AC, OI.Br, OIAC.P, OIBr.P, OIdC.P	Can be reset after 10.0s
5	Normal trips	All other trips not included in this table	Can be reset after 1.0s
5	Non-important trips	th, thS, Old1, cL2, cL3, SCL	If Pr 10.37 is 1 or 3 (i.e. bit 0 set to 1), the drive will stop before tripping
5	Phase loss	PH	The drive attempts to stop before tripping
5	Drive over-heat based on thermal model	O.ht3	The drive attempts to stop before tripping, but if it does not stop within 10s the drive will automatically trip
6	Self-resetting trips	UV	Under voltage trip cannot be reset by the user, but is automatically reset by the drive when the supply voltage is with specification

Although the UV trip operates in a similar way to all other trips, all drive functions can still operate but the drive cannot be enabled. The following differences apply to the UV trip:

- Power-down save user parameters are saved when UV trip is activated except when the main high voltage supply is not active (i.e. operating in Low Voltage DC Supply Mode, Pr 6.44 = 1).
- 2. The UV trip is self-resetting when the DC bus voltage rises above the drive restart voltage level. If another trip is active instead of UV at this point, the trip is not reset.
- The drive can change between using the main high voltage supply and low voltage DC supply only when the drive is in the under voltage condition (Pr 10.16 = 1). The UV trip can only be seen as active if another trip is not active in the under voltage condition.
- 4. When the drive is first powered up a UV trip is initiated if the supply voltage is below the restart voltage level and another trip is not active. This does not cause save power down save parameters to be saved at this point.

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

13.2 Alarm indications

In any mode an alarm flashes alternately with the data displayed on the 2nd row when one of the following conditions occur. If action is not taken to eliminate any alarm except "Autotune", "Lt" and "PLC" the drive may eventually trip. Alarms flash once every 640ms except "PLC" which flashes once every 10s. Alarms are not displayed when a parameter is being edited.

Table 13-4 Alarm indications

Lower display	Description
br.rS	Braking resistor overload
	r $I^{2}t$ accumulator (Pr 10.39) in the drive has reached alue at which the drive will trip and the braking IGBT is
Hot	Heatsink or control board or inverter IGBT over temperature alarms are active
	eatsink temperature has reached a threshold and the p O.ht2 if the temperature continues to rise (see the
The ambies	nt temperature around the control PCB is approaching mperature threshold (see the O.CtL trip).
OVLd	Motor overload
	ccumulator (Pr 4.19) in the drive has reached 75% of ich the drive will be tripped and the load on the drive is
Auto tune	Autotune in progress
The autotune p alternatively on	rocedure has been initialised. 'Auto' and 'tunE' will flash the display.
Lt	Limit switch is active
	limit switch is active and that it is causing the motor to forward limit switch with forward reference etc.)
PLC	Onboard PLC program is running
	C program is installed and running. The lower display once every 10s.

13.3 Status indications

Table 13-5 Status indications

Upper display	Description	Drive output stage
ACt	Regeneration mode active	
-	is enabled and synchronised to the	Enabled
supply.		
ACUU	AC Supply loss	
	letected that the AC supply has been	Enabled
by decelerating	npting to maintain the DC bus voltage	
dc	DC applied to the motor	
	_	Enabled
dEC	plying DC injection braking.	
	Decelerating	Enabled
	celerating the motor.	
inh	Inhibit	
	ibited and cannot be run.	Disabled
	le signal is not applied to terminal 31 or	
Pr 6.15 is set to		
POS	Positioning	Enabled
	sitioning/orientating the motor shaft.	
rdY	Ready	Disabled
The drive is rea	ady to be run.	
run	Running	Enabled
The drive is run	nning.	2.100100
SCAn	Scanning	
Regen> The dr	ive is enabled and is synchronising to	Enabled
the line.		
StoP	Stop or holding zero speed	
	ding zero speed.	Enabled
	ive is enabled but the AC voltage is too	
	bus voltage is still rising or falling.	
triP	Trip condition	
	ripped and is no longer controlling the	Disabled
motor. The trip	code appears on the lower display.	

Table 13-6 Solutions Module and SMARTCARD status indications at power-up

Lower display	Description						
boot							
A parameter set is being transferred from the SMARTCARD to the							
drive during por	wer-up. For further information, please refer to section						
•	p from the SMARTCARD on every power up (Pr 11.42 =						
<i>boot (4))</i> on page 121.							
cArd							
The drive is wri	ting a parameter set to the SMARTCARD during power-						
up.							
	mation, please refer to section 9.2.3 Auto saving						
parameter char	nges (Pr 11.42 = Auto (3)) on page 121.						
loAding							
The drive is wri	ting information to a Solutions Module.						

Safety Information	Product information	Mechanical Installation	Electrical Installation	Getting Started	Basic parameters	Running the motor	Optimization	SMARTCARD operation	Onboard PLC	Advanced parameters	Technical Data	Diagnostics	UL Listing Information
-----------------------	------------------------	----------------------------	----------------------------	--------------------	---------------------	----------------------	--------------	---------------------	----------------	---------------------	-------------------	-------------	---------------------------

13.4 Displaying the trip history

The drive retains a log of the last 10 trips that have occurred in Pr **10.20** to Pr **10.29** and the corresponding multi-module drive module number (Pr **6.49** = 0) or the trip time (Pr **6.49** = 1) for each trip in Pr **10.41** to Pr **10.51**. The time of the trip is recorded from the powered-up clock (if Pr **6.28** = 0) or from the run time clock (if Pr **6.28** = 1).

Pr **10.20** is the most recent trip, or the current trip if the drive is in a trip condition (with the module number or trip time stored in Pr **10.41** and Pr **10.42**). Pr **10.29** is the oldest trip (with the module number or trip time stored in Pr **10.51**). Each time a new trip occurs, all the parameters move down one, such that the current trip (and time) is stored in Pr **10.20** (and Pr **10.41** to Pr **10.42**) and the oldest trip (and time) is lost out of the bottom of the log.

If any parameter between Pr **10.20** and Pr **10.29** inclusive is read by serial communications, then the trip number in Table 13-1 *Trip indications* on page 243 is the value transmitted.

13.5 Behaviour of the drive when tripped

If the drive trips, the output of the drive is disabled so that the drive stops controlling the motor. If any trip occurs (except the UV trip) the following read only parameters are frozen until the trip is cleared. This is to help in diagnosing the cause of the trip.

Parameter	Description
1.01	Frequency/speed reference
1.02	Pre-skip filter reference
1.03	Pre-ramp reference
2.01	Post-ramp reference
3.01	Frequency slaving demand/Final speed ref
3.02	Speed feedback
3.03	Speed error
3.04	Speed controller output
4.01	Current magnitude
4.02	Active current
4.17	Reactive current
5.01	Output frequency
5.02	Output voltage
5.03	Power
5.05	DC bus voltage
7.01	Analog input 1
7.02	Analog input 2
7.03	Analog input 3

Analog and digital I/O

The analog and digital I/O on the drive continue to work correctly if a trip occurs, except the digital outputs will go low if one of the following trips occur: O.Ld1, PS.24V.

Drive logic functions

The drive logic functions (i.e. PID, variable selectors, threshold detectors, etc.) continue to operate when the drive is tripped.

Onboard PLC program

The Onboard PLC program continues to run if the drive is tripped, except if one of Onboard PLC program trips occur.

Braking IGBT

The braking IGBT continues to operate even when the output of the drive is not enabled (except if the low voltage DC supply is being used), but is only disabled if any of the following trips occurs or would occur if another trip had not already become active: OI.Br, PS, It.Br, OV or any HFxx trip.

Safety	Product	Mechanical	Electrical	Getting	Basic	Running the	Optimization	SMARTCARD	Onboard	Advanced	Technical	Diagnostics	UL Listing
Information	information	Installation	Installation	Started	parameters	motor	Optimization	operation	PLC	parameters	Data	Diagnostics	Information

14 UL Listing Information

Size 6 to 9 Free Standing drives have been assessed to meet both UL and cUL requirements.

c (UL) us

The Control Techniques UL file number is E171230. Confirmation of UL listing can be found on the UL website: www.ul.com.

14.1 Common UL information

Conformity

The drive conforms to UL listing requirements only when the following are observed:

- The drive is installed in a type 1 enclosure, or better, as defined by UL50
- The ambient temperature does not exceed 40°C (104°F) when the drive is operating
- The terminal tightening torques specified in section 3.8.2 *Terminal sizes and torque settings* on page 41
- If the drive control stage is supplied by an external power supply (+24V), the external power supply must be a UL Class 2 power supply

Motor overload protection

The drive provides motor overload protection. The default overload protection level is no higher than 150% of full-load current (FLC) of the drive in open loop mode and no higher than 175% of full-load current (FLC) of the drive in closed loop vector or servo modes. It is necessary for the motor rated current to be entered into Pr **0.46** (or Pr **5.07**) for the protection to operate correctly. The protection level may be adjusted below 150% if required. Refer to section 8.3 *Current limits* on page 116 for more information. The drive also provides motor thermal protection. Refer to section 8.4 *Motor thermal protection* on page 116.

Overspeed Protection

The drive provides overspeed protection. However, it does not provide the level of protection afforded by an independent high integrity overspeed protection device.

14.2 Power dependant UL information

Conformity

The drive conforms to UL listing requirements only when the following is observed:

Fuses

UL recognized semiconductor fuses type Ferraz PSC size 32 660V (e.g. Ferraz designation 6,6 URD 32 0400 for a 400A 660Vac fuse) or Siba UL recognized semiconductor fuses type URS SQB2 690Vac (e.g. Siba model number 20 627 31.400). The model does not comply with UL if any other fuses or MCBs are used in place of those stated.

For further details refer to Table 4-3 400V Free Standing drive input current, fuse and cable size rating on page 54.

With reference to the above the fuse current rating should be taken from the column headed 'Semiconductor IEC class aR'. This semiconductor fuse must be used in series with a HRC type fuse to provide full circuit protection. For UL applications the applicable HRC type fuse to use is a UL listed class J, with the current rating obtained from the column headed 'HRC IEC class gG UL class J'. Alternatively any circuit breaker of the correct rating which meets the requirements of the NEC (national Electric Code) for branch circuit protection can be used in place of the class J fuse.

Field wiring

• Class 1 75°C (167°F) copper wire only is used in the installation.

Field wiring connectors

• UL listed wire connectors are used for terminating power circuit field wiring e.g. llsco TA series.

14.3 AC supply specification

The drive is suitable for use in a circuit capable of delivering not more than 100,000rms symmetrical Amperes at 528Vac rms maximum (400V drives) or 600Vac rms maximum (690V drives).

14.4 Maximum continuous output current

The drive models are listed as having the maximum continuous output currents (FLC) shown in table 14-1 (Table 12 *Technical Data* on page 233).

Table 14-1 Maximum continuous output current

Model	FLC (A)	Model	FLC (A)
SP64X1	205	SP66X1	125
SP64X2	236	SP66X2	144
SP74X1	290	SP76X1	168
SP74X2*	335	SP76X2	192
SP74X2**	350	SP86X1	231
SP84X1	389	SP86X2	266
SP84X2	450	SP86X3	311
SP84X3	545	SP86X4	355
SP84X4	620	SP96X1	400
SP94X1	690	SP96X3	533
SP94X3	900	SP96X4	616
SP94X4	1010	SP96X5	711
SP94X5	1164		

*SP74X2 output current rating conforms to UL and cUL listing requirements only when the ambient temperature is 40°C or lower.

**SP74X2 output current rating conforms to UL listing requirements only when the ambient temperature is 35°C or lower.

14.5 Safety label

The safety label supplied with the connectors and mounting brackets must be placed on a fixed part inside the drive enclosure where it can be seen clearly by maintenance personnel for UL compliance.

The label clearly states "CAUTION Risk of Electric Shock Power down unit 10 minutes before removing cover".

14.6 UL listed accessories

- SM-Keypad
- SM-Keypad Plus
- SM-I/O Plus
- SM-Ethernet
- SM-CANopen
- SM-Universal Encoder Plus
- SM-Resolver
- SM-Encoder Plus
- SM-L/O Lite
- SIM-I/O Lite
 SM-I/O 120V
- SIM-1/O 120V
 SM-1 ON
- SM-LON
- SM-Applications Plus
- 15-way D-type converter
- SM-Encoder Output Plus

- SM-PROFIBUS-DP
- SM-DeviceNet
- SM-I/O Timer
- SM-CAN
- SM-INTERBUS
- SM-Applications Lite
- SM-SLM
- SM-Applications
- SM-I/O PELV
- SM-I/O 24V Protected
- SM-I/O 32
- SM-SERCOS
- SM-I/O Timer

List of figures

Figure 2-1	Unidrive SP Free Standing size 6 and 7 order codes8
Figure 2-2	Unidrive SP Free Standing size 8 and 9
	order codes
Figure 2-3	Drive configuration
Figure 2-4	Features of the size 6 and 7 Free Standing drive13
Figure 2-5	Features of the size 8 and 9 Free Standing
Figure 2-5	drive14
Figure 2-6	Typical drive rating label15
Figure 2-7	Options available with Unidrive SP
Figure 3-1	Removing a Free Standing drive from
. gane e i	packaging19
Figure 3-2	Lifting the Free Standing drive
Figure 3-3	Location and identification of terminal
C	covers for Free Standing drives21
Figure 3-4	Removing the size 6, 7 and 8 terminal
	covers from the Free Standing drive22
Figure 3-5	Removing the size 9 terminal covers from
	the Free Standing drive23
Figure 3-6	Size 6&7or sizes 8&9 with date code S17
	or earlier24
Figure 3-7	Identification of fuse mounting holes24
Figure 3-8	Installing DIN80 type fuses24
Figure 3-9	Installing DIN110 type fuses24
Figure 3-10	Preparation for baying the incomer/ applications shell25
Figure 3-11	Preparation for baying the size 8 Free Standing drive25
Figure 3-12	Preparation for baying the size 9 Free
riguie e 12	Standing drive (slave and master)
Figure 3-13	Location of the rectifier status connectors
0	for size 9 Free Standing drive27
Figure 3-14	Baying of Free Standing drive and incomer27
Figure 3-15	Installing the parallel cable from a size 9
	master to slave
Figure 3-16	Input busbar connections between the 6
	pulse size 9 master and slave
	(and incomer)29
Figure 3-17	Input busbar connections between the
	12 pulse size 9 master and slave
	(and incomer)
Figure 3-18	Baying a 6 pulse incomer to a 6 pulse
	Free Standing drive (size 8 shown)
Figure 3-19	Removing the cable gland plate from the
	Free Standing drive for "glanding off"
	the cable
Figure 3-20	Incomer/applications shell dimensions
Figure 3-21	Size 6 and 7 drives with integral line side
	options

Figure 3-22	Size 6, 7 and 8 Free Standing drive
Figure 5-22	dimensions
Figure 3-23	Size 9 Free Standing drive dimensions
Figure 3-24	Size 6 , 7, 8 and 9 EPCOS external EMC filter 37
Figure 3-25	Size 8 and 9 Schaffner external EMC filter 38
Figure 3-26	Location of power and ground terminals
ga. e e _e	on Free Standing drives sizes 6 & 7
Figure 3-27	Locations of the power and ground terminals
3	on Free Standing drives sizes 8 and 9 40
Figure 3-28	Installation and removal of a
0	Solutions Module42
Figure 3-29	Installation and removal of a keypad
Figure 4-1	Unidrive SP size 6 Free Standing
•	drive power connections
Figure 4-2	Unidrive SP size 7 Free Standing
	drive power connections
Figure 4-3	Unidrive SP size 8 Free Standing
	drive power connections47
Figure 4-4	Unidrive SP size 9 Free Standing
	drive power connections48
Figure 4-5	Unidrive SP size 6 and 7 Free
	Standing drive ground connections
Figure 4-6	Unidrive SP size 8 and 9 Free Standing
	drive ground connections49
Figure 4-7	Location of size 8 and 9 Free Standing drive
	24V power supply51
Figure 4-8	SP8XX4 and SP9XX5 24V power supply 51
Figure 4-9	Location of size 8 and 9 Free Standing
	drive mains transformer52
Figure 4-10	Cable construction influencing the
	capacitance
Figure 4-11	Preferred chain connection for multiple
F : 4.40	motors
Figure 4-12	Alternative connection for multiple motors 57
Figure 4-13	Typical protection circuit for a
Figure 4.44	braking resistor
Figure 4-14	Installation of grounding bracket
Figure 4 15	(master/slave)
Figure 4-15	Feedback cable, twisted pair
Figure 4-16	Connecting the motor cable to an
Figure 4-17	isolator / disconnect switch
Figure 4-18	Surge suppression for digital and
rigule 4-10	unipolar inputs and outputs
Figure 4-19	Surge suppression for analog and
riguie 4-15	bipolar inputs and outputs
Figure 4-20	Location of the RJ45 serial comms
. iguit 7 20	connector
Figure 4-21	Default terminal functions
Figure 4-22	Location of encoder connection
Figure 4-23	Start / stop control EN954-1 category
<u> </u>	

	B - replacement of contactor70
Figure 4-24	Category 3 interlock using
-	electromechanical safety contactors
Figure 4-25	Category 3 interlock using SAFE TORQUE
0	OFF (SECURE DISABLE) with protected
	wiring
Figure 4-26	Use of contactor and relay to avoid the need
	for protected wiring
Figure 5-1	SM-Keypad
Figure 5-2	SM-Keypad Plus
Figure 5-3	Display modes
Figure 5-4	Mode examples
Figure 5-5	Parameter navigation
Figure 5-6	Menu structure
Figure 5-0	Menu 0 copying
-	Menu 0 logic diagram
Figure 6-1	Fixed and variable V/f characteristics
Figure 6-2	
Figure 7-1	Minimum connections to get the motor
E isuura 0.4	running in any operating mode
Figure 8-1	Motor thermal protection (Heavy Duty)
Figure 8-2	Motor thermal protection (Normal Duty) 116
Figure 8-3	Torque and rated voltage against speed 117
Figure 9-1	Installation of the SMARTCARD119
Figure 9-2	Basic SMARTCARD operation
Figure 10-1	Onboard PLC program scheduling125
Figure 10-2	Programming options for Unidrive SP126
Figure 11-1	Menu 1 logic diagram136
Figure 11-2	Menu 2 logic diagram140
Figure 11-3	Menu 3 Open-loop logic diagram143
Figure 11-4	Menu 3 Closed loop logic diagram144
Figure 11-5	Menu 4 Open loop logic diagram
Figure 11-6	Menu 4 Closed-loop vector logic diagram 149
Figure 11-7	Menu 4 Servo logic diagram150
Figure 11-8	Menu 5 Open-loop logic diagram
Figure 11-9	Menu 5 Closed-loop logic diagram
Figure 11-10	Menu 6 logic diagram157
Figure 11-11	Menu 7 logic diagram159
Figure 11-12	Menu 8 logic diagram162
Figure 11-13	Menu 9 logic diagram: Programmable logic 165
Figure 11-14	Menu 9 logic diagram: Motorized pot and
•	binary sum
Figure 11-15	Menu 12 logic diagram170
Figure 11-16	Menu 12 logic diagram (continued)171
Figure 11-17	Open-loop brake function
Figure 11-18	Open-loop brake sequence
Figure 11-19	Closed-loop brake function
Figure 11-20	Closed-loop brake sequence
Figure 11-21	Menu 13 Open-loop logic diagram
Figure 11-22	Menu 13 Closed-loop logic diagram
Figure 11-23	Menu 14 Logic diagram
Figure 11-23	Location of Solutions Module slots and
- iguit 11-24	their corresponding menu numbers
	(size 1 to 6)
Figure 11 OF	
i iyuite i 1-20	SM-Universal Encoder Plus logic diagram 188

F : 44.00	
-	SM-Resolver logic diagram192
Figure 11-27	5 5
Figure 11-28	
Figure 11-29	
Figure 11-30	SM-I/O Plus digital logic diagram 1200
Figure 11-31	SM-I/O Plus digital logic diagram 2201
Figure 11-32	SM-I/O Lite & SM-I/O Timer digital I/O
	logic diagram203
Figure 11-33	SM-I/O Lite & SM-I/O Timer analog I/O
	logic diagram204
Figure 11-34	SM-I/O Timer real time clock logic diagram204
Figure 11-35	SM-I/O PELV digital I/O logic diagram206
Figure 11-36	SM-I/O PELV digital input logic diagram207
Figure 11-37	SM-I/O PELV relay logic diagram207
Figure 11-38	SM-I/O PELV analog input logic diagram207
Figure 11-39	SM-I/O PELV analog output logic diagram208
Figure 11-40	SM-I/O 24V Protected digital I/O logic
	diagram210
Figure 11-41	SM-I/O 24V Protected digital I/O logic
	diagram211
Figure 11-42	-
0	diagram211
Figure 11-43	SM-I/O 24V Protected analog output logic
0	diagram
Figure 11-44	SM-I/O 120V digital input logic diagram213
Figure 11-45	
Figure 11-46	
Figure 11-47	Digital input connections when Pr 6.04 is
3	set to 0 to 3
Figure 13-1	Keypad status modes
Figure 13-2	Location of the status LED
i iguio io z	

List of tables

Table 2-1	400V standard (IP21) Free Standing drive
	ratings at 40°C (104°F) 6 pulse or 12 pulse
	(380V to 480V ±10%)
Table 2-2	690V standard (IP21) Free Standing drive
	ratings at 40°C (104°F) 6 pulse or 12 pulse
	(500V to 690V ±10%)10
Table 2-3	400V IP23 Free Standing drive ratings at
	33°C (91°F) 6 pulse or 12 pulse
	(380V to 480V ±10%)11
Table 2-4	690V IP23 Free Standing drive ratings at
	33°C (104°F) 6 pulse or 12 pulse
	(575V to 690V ±10%)11
Table 2-5	Typical overload limits for size 6 to 912
Table 2-6	Encoders compatible with Unidrive SP12
Table 2-7	Solutions Module identification16
Table 2-8	Keypad identification18
Table 3-1	Size 6 and 7 Free Standing drive EMC
	filter details
Table 3-2	Size 8 and 9 Free Standing drive EMC
	filter details for 6 pulse drives
Table 3-3	Size 6, 7, 8 and 9 EPCOS External EMC
	filter dimensions
Table 3-4	Schaffner External EMC filter dimensions38
Table 3-5	Drive control and relay terminal data41
Table 3-6	Terminal data
Table 3-7 Table 3-8	EPCOS external EMC filter terminal data41 Schaffner external EMC Filter terminal data41
Table 3-8 Table 4-1	Behavior of the drive in the event of a motor
	circuit ground (earth) fault with an IT supply50
Table 4-2	Supply fault current used to calculate
	maximum input currents
Table 4-3	400V Free Standing drive input current,
	fuse and cable size rating
Table 4-4	690V Free Standing drive input current,
	fuse and cable size rating
Table 4-5	Fuses
Table 4-6	Installation class55
Table 4-7	Maximum motor cable lengths56
Table 4-8	Braking transistor turn on voltage58
Table 4-9	Minimum resistance values and peak power
	rating for the braking resistor at
	40°C (104°F)58
Table 4-10	Connection details for RJ45 connector63
Table 4-11	Isolated serial comms lead details63
Table 4-12	The Unidrive SP control connections consist
	of:63
Table 4-13	Encoder types67
Table 4-14	Drive encoder connector details
Table 4-15	Feedback resolution based on frequency
	and voltage level
Table 5-1	Advanced menu descriptions75

Tabla	5.0	Manu 40 normator descriptions 75
Table	-	Menu 40 parameter descriptions
Table		Menu 41 parameter descriptions
Table	-	Alarm indications
Table	5-5	Solutions Module and SMARTCARD
Tabla	7 4	status indications on power-up76
Table	/-1	Minimum control connection requirements
Tabla	7 0	for each control mode
Table	1-2	Minimum control connection requirements
Tabla	7.0	for each mode of operation
Table	7-3	Parameters required for feedback device
T . I. I.		set-up 102
Table	7-4	Restrictions of drive encoder lines per
		revolution with software version V01.06.01
-		and later 105
Table	7-5	Restrictions of drive encoder lines per
		revolution with software version
		V01.06.00 and earlier
Table	•	Available switching frequencies
Table	8-2	Sample rates for various control tasks
		at each switching frequency 117
Table	•	SMARTCARD data blocks 120
Table	-	SMARTCARD codes 120
Table		Key to parameter table coding 122
Table	-	Trip conditions
Table		SMARTCARD status indications 124
Table		Menu descriptions 128
Table		Key to parameter table coding 128
Table		Feature look-up table 129
Table	11-4	Definition of parameter ranges &
		variable maximums 132
Table	-	Maximum motor rated current 134
Table		Active reference
Table	12-1	Maximum permissible continuous
		output current @ 40°C (104°F) ambient
		for 400V IP21 and @ 33 °C (91 °F) ambient
		for 400V IP23 Free Standing drives
Table	12-2	Maximum permissible continuous output
		current @ 40°C (104°F) ambient for 400V
		IP23 Free Standing drives
Table	12-3	Maximum permissible continuous output
		current @ 40°C (104°F) ambient for 690V
		IP21 and @ 33 °C (91 °F) ambient for 690V
		IP23 Free Standing drives
Table	12-4	Maximum permissible continuous output
		current @ 50°C (122°F) ambient for 400V
		Free Standing drives 234
Table	12-5	Losses @ 40°C (104°F) ambient for 400 V
		IP21 and @ 33 °C (91 °F) ambient for 400V
		IP23 Free Standing drives
Table		IP Rating degrees of protection
Table	12-7	UL enclosure ratings 235

Table	12-8	Roof mounted fans236	
Table	12-9	Acoustic noise data for Free Standing drives .236	
Table	12-10	Overall Free Standing drive dimensions236	
Table	12-11	Overall Free Standing drive weights236	
Table	12-12	Supply fault current used to calculate	
		maximum input currents236	
Table	12-13	400V Free Standing drive input current,	
		fuse and cable size rating237	
Table	12-14	690V Free Standing drive input current,	
		fuse and cable size rating238	
Table	12-15	Fuses	
Table	12-16	Installation class	
Table	12-17	Maximum motor cable lengths239	
Table	12-18	Minimum resistance values and peak	
		power rating for the braking resistor	
		at 40°C (104°F)239	
Table	12-19	Drive control and relay terminal data239	
Table	12-20	Free standing drive terminal data239	
Table	12-21	Immunity compliance240	
Table	12-22	Size 6 and 7 Free Standing drive EMC	
		filter details241	
Table	12-23	Free standing drive EMC filter details	
		(size 8 and 9)241	
Table	13-1	Trip indications	
Table	13-2	Serial communications look-up table256	
Table	13-3	Trip categories257	
Table	13-4	Alarm indications258	
Table	13-5	Status indications258	
Table	13-6	Solutions Module and SMARTCARD	
		status indications at power-up258	
Table	14-1	Maximum continuous output current	

Index

D

Symbols

+10V user output	65
+24V external input	
+24V user output	66

Numerics

0V common	
-----------	--

Α

AC supply contactor
AC supply requirements
Acceleration 80, 84, 98, 99, 100, 101, 109, 112, 142
Access
Access Level77
Accuracy
Acoustic noise
Advanced menus75
Advanced parameters128
Alarm258
Alarm Indications258
Altitude
Analog input 265
Analog input 365
Analog output 1
Analog output 2
Autotune

в

Basic requirements	94
Braking	58
Braking Modes	
Braking resistor values	239

С

Cable lengths (maximum)	239
Cable size ratings	236
Cable types and lengths	
Catch a spinning motor	
Cautions	7
Closed loop vector mode	12
Control connections	63
Control terminal specification	65
Cooling	20
Cooling method	235
Corrosive gasses	235
CTSoft	102
Current limit	84
Current limits	116
Current loop gains	109, 112, 114
Current ratings	
-	

DC bus voltage	58, 132, 225, 228, 229
Deceleration 58, 80, 84, 87, 98, 99, 10	0, 101, 109, 112, 142,
222,225,228	
Defaults (restoring parameter)	
Derating	
Destination parameter	
Diagnostics	
Digital I/O 1	
Digital I/O 2	
Digital I/O 3	
Digital Input 1	
Digital Input 2	
Digital Input 3	
Dimensions (overall)	
Display	
Display messages	
Drive enable	
Drive features	

Е

-	
Electrical Installation	44
Electrical safety	20
Electrical terminals	39
Electromagnetic compatibility (EMC)	20, 59, 240
EMC filters (optional external)	
Emission	
Encoder connections	67
Encoder feedback limits	117
Encoder types	67
Environmental protection	20
External EMC filter	36

F

Fan (roof)	236
Fast Disable	232
Field weakening (constant power) operation	117
Fieldbus module category parameters	
Fixed V/F mode	12
Fuse ratings	
Fuse types	56

G

Getting Started	72
Ground connections	
Ground leakage	59
Ground terminals	

Н

Hazardous areas	
High speed operation	117
Humidity	235

I

I/O module category parameters	199
Input current ratings	
Input inductor calculation	50
IP Rating (Ingress protection)	235
Items supplied with the drive	18

κ

Keypad and display - fitting / removal	42
Keypad operation	72

L

Line power supply loss modes	.228
Line reactors	50

Μ

Maximum speed / frequency	
Mechanical Installation	
Menu 0	
Menu 01 - Frequency / speed reference	
Menu 02 - Ramps	140
Menu 03 - Slave frequency, speed feedback and speed	
control	143
Menu 04 - Torque and current control	148
Menu 05 - Motor control	152
Menu 06 - Sequencer and clock	157
Menu 07 - Analog I/O	
Menu 08 - Digital I/O	162
Menu 09 - Programmable logic, motorized pot and	
binary sum	165
Menu 10 - Status and trips	
Menu 11 - General drive set-up	
Menu 12 - Threshold detectors and variable selectors	
Menu 13 - Position control	
Menu 14 - User PID controller	
Menu 15 and 16 - Solution Module set-up	
Menu 15, 16 and 17 - Solutions Module set-up	
Menu 18 - Application menu 1	
Menu 19 - Application menu 2	
Menu 20 - Application menu 3	
Menu 21 - Second motor parameters	
Menu 22 - Additional Menu 0 set-up	
Menu structure	
Minimum connections to get the motor running in	
any operating mode	96
Mode parameter	
Model number	
Monitoring	
Motor (running the motor)	
Motor cable - interruptions	
Motor map parameters	
Motor number of poles	
Motor operation	
Motor parameters	
Motor rated current	
Motor rated current (maximum)	
Motor rated frequency	
Motor rated power factor	0, 111 8 111
Motor rated speed	
Motor rated speed autotune	
Motor rated voltage	
Motor requirements	
Motor thermal protection	
Motor winding voltage Multiple motors	

Ν

NEMA rating	235
Notes	7

0

-	
Onboard PLC	125
Open loop mode	12
Open loop vector mode	12
Operating mode (changing)	
Operating modes	8
Operating-mode selection	93
Optimization	106
Options	15
Output contactor	
Output frequency	235

Ρ

Parameter access level	77
Parameter ranges	132
Parameter security	
Parameter x.00	84
Planning the installation	20
Position feedback	94
Position feedback module category parameters	188
Power ratings	58, 233
Power terminals	39
Precision reference Analog input 1	65
Product information	9

Q

Quadratic V/F mode	12
Quick start commissioning	98, 102
Quick start connections	

R

Ramp mode selectors	86
Ramps	84
Ratings	9, 53
Reactor current ratings	50
Reference modes	224
Relay contacts	67
Residual current device (RCD)	59
Resistances (minimum)	58
Resolution	236
RJ45 connector - connection details	63
Roof fan	236
Routine maintenance	43

S

5	
SAFE TORQUE OFF	69
Safety Information	7, 19
Saving parameters	
SECURE DISABLE	
Serial comms lead	
Serial communications connections	
Serial communications look-up table	
Serial communications port isolation	
Servo	
Single line descriptions	80
Slip compensation	
SMARTCARD operation	
SMARTCARD trips	123
Solutions Module	
Solutions Module - fitting / removal	
Speed feedback	94
Speed limits	
Speed loop gains	.110, 113, 115
Speed range	
Speed reference selection	
Speed-loop PID gains	85
Start up time	
Starts per hour	235
Status	
Status Indications	
Status information	93
Stop modes	227
Storage	
Supply requirements	
Supply types	50
Switching frequency	117, 118
SYPTLite	125

т

Technical data	233
Temperature	235
Terminal cover removal	20
Terminal sizes	41
Thermal protection circuit for the braking resistor	59
Torque modes	226
Torque settings	41, 239
Trip	242
Trip categories	257
Trip History	259
Trip Indications	242

U

UL Listing Information
User Security77

V

Variable maximums Vibration	-
Voltage boost	85
W	

Warnings7	
Weights	

